بررسی عملکرد انواع مختلف توابع پایه ی شعاعی کروی در مدلسازی محلی میدان گرانی زمین

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد، دانشگاه تهران

2 دانشیار گروه ژئودزی، دانشکده مهندسی نقشه برداری و اطلاعات مکانی، دانشگاه تهران

چکیده

میدان ثقل جهانی معمولاً توسط توابع پایهی هارمونیک کروی تا درجه معینی از قدرت تفکیک طیفی و مکانی مدل میشود. توزیع غیریکنواخت و کیفیت متفاوت دادهها، این توابع را در مدلسازی محلی میدان ثقل محدود میکند. این توابع بیشتر خاصیت جهانی میدان ثقل را نمایش میدهند و برای نمایش فرکانسهای پایین میدان ثقل مناسب هستند. در کاربردهای محلی، توابع پایهی شعاعی بر روی سطح کره با برخورداری از خاصیت محمل شبه محلی میتوانند به عنوان جایگزین مناسبی برای هارمونیکهای کروی استفاده شده و میدان گرانی زمین را تا درجهی بالایی از قدرت تفکیک طیفی و مکانی تقریب زنند. این مدلهای محلی معمولاً دقت بهتری در محل مورد نظر نسبت به مدلهای جهانی دارند. توابع پایهی شعاعی کروی معمولاً بر روی کره متعامد نیستند که این امر منجر به پیچیدگی بیشتر مسئله میشود. در این مقاله، عملکرد انواع مختلف توابع پایهی شعاعی کروی شامل کرنل جرم نقطهای، چندقطبی شعاعی، کرنل پواسن و ویولت پواسن در مدلسازی محلی میدان ثقل زمین با استفاده از دادههای شتاب گرانی در منطقهی فارس ساحلی مقایسه شده است. برای حل مسئلهی معکوس غیرخطی مدلسازی میدان گرانی زمین با استفاده از توابع پایهی شعاعی کروی، تکنیک "کمترین مربعات" به کار رفته است. بدین منظور، الگوریتم بهینهسازی لونبرگ-مارکواردت طی یک پروسهی تکراری با مینیمم کردن اختلاف بین مقادیر مشاهداتی و مقادیر مدل شده، پارامترهای مدلسازی را تخمین میزند. این پارامترها شامل تعداد، مکان، عمق و ضرایب مقیاس توابع پایه شعاعی هستند. به منظور افزایش کارایی عددی الگوریتم لونبرگ- مارکواردت در حل مسئلهی مدلسازی میدانگرانی، مقدار اولیهی پارامتر پایدارسازی از طریق رابطهای بر مبنای ژاکوبین تابع هدف تعیین و روشی برای به هنگامسازی این پارامتر ارائه شده است. نتایج این تحقیق نشان میدهد که در صورت انتخاب عمق مناسب توابع پایه، دقت مدلسازی محلی میدان گرانی برای انواع توابع پایهی شعاعی مورد بررسی تقریباً یکسان خواهد بود.

کلیدواژه‌ها


عنوان مقاله [English]

Investigating the performanceof various types of Spherical Radial Basis Functions (SRBF) in the local modeling of the Earth’s gravity field

نویسندگان [English]

  • Mahboobeh mohammad Yusefi Bohluli Ahmadi 1
  • Abdolreza Safari 2
  • َAnahita Shahbazi 1
1 MSC student, University of Tehran
2 Associate professor of surveying and geospatial engineering, faculty of engineering, University of Tehran
چکیده [English]

Abstract
Global gravity field is commonlymodelled in spherical harmonic basis functions to a certain degreeof spectral and spatial resolution. Non-uniformdistribution and different quality data limitthese functions in local gravity field modeling.Spherical harmonic basis functionsshow more global properties that means they are suitable forshowing low frequency gravityfield. In local-scale studies, radial basis functionson the sphere with quasi-local support can improve gravityfields up to a high spatial/spectral resolution.The local modelsare usually moreaccurate than global modelsin the desired locations.These functions are usually notorthogonal on a sphere, which makes the modelling process morecomplex.In this study we evaluated the radial basis functions: point-mass kernel, radial multipoles, Poisson and Poisson wavelet ,and then we compared their performances in regional gravity fieldmodelling on the sphere using real gravity acceleration data in Farscoastal area. A least-squares technique has been used toestimate the gravity field parameters. Iterative Levenberg-Marquardtalgorithm is appliedfor nonlinear inverse problem solving and minimization of differences between calculated andobserved values. These parameters include number, location, depth and scalingcoefficients in radial basis function.In order to increase efficiency Levenberg-Marquardt algorithm for solving gravity field modeling, the initial valueof theregularization parameter determined with a relation based on objective functionJacobian and also a method is provided for this parameter updates. Theresults showed that the accuracy of gravity field modeling forany types of radial basis function would be almost thesame, if the depths of SRBFs are chosen properly.

کلیدواژه‌ها [English]

  • Gravity Field
  • Spherical radial basis functions
  • Levenberg–Marquardt Algorithm
  • Least-squaresmethod

1- صفری ع، (1390)، ژئودزی فیزیکی، انتشارات دانشگاه تهران.

2- صفری ع، فروغی ا، شریفی م، (1392)، مدل‌سازی محلی میدان گرانی با استفاده از تابع‌های پایه شعاعی بررسی موردی: مدل‌سازی میدان گرانی در سواحل خلیج فارس، فیزیک زمین و فضا، (39)3، 48-33.

3- Antoni M, Keller W, Weigelt M. (2009). Recovery of residual GRACE-observations by radial base functions.VII. Hotine-Marussi Symposium on Theoretical Geodesy.

4- Araneda, A. (2004). Variation of the Levenberg Marquardt method:An attemp to improve efficiency. Massachusette Institude of technology.

5- ArdalanA.A,GrafarendE.W. (2001). Ellipsoidal geoidal undulations (ellipsoidal Bruns formula). Journal of Geodesy, 75(9-10), 544-552.

6- Barthelmes.F. (1986). Untersuchungen zur Approximation des äußeren Gravitationsfeldes der Erde durch Punktmassen mit optimierten Positionen. Veroffentlichungen des Zentralinstituts Physik, 122.

7- BarthelmesF. (1988). Local gravity field approximation by point masses with optimized positions. Geodesy and Physics of the Earth. Proc: 6th international symposium.

8- Bentel K, Schmidt M, Gerlach C. (2012). Different radial basis functions and their applicability for regional gravity field representation on the sphere. Springer.

9- Claessens S.J, Featherstone W.E, Barthelmes F. (2001). Experiences with point-mass gravity field modelling in the Perth region, Western Australia. Geomatics Research Australasia, 53-86.

10-  Eicker.A,Mayer-Gürr.T,Ilk.K.H. (2004). Global gravity field solutions from GRACE SST data and regional refinements by GOCE SGG observations. Proceedings IAG international symposium gravity.Porto, Portugal: geoid and space missions.

11-  Featherstone.W ,Kirby.J. (1998). Estimates of the separation between the Geoid and the Quasi-Geoid over austrolia. Geomatics Research Australasia, 79-90.

12-  Gavin.H. (2011). The Levenberg-Marquardt method for nonlinear least squares curve-fitting problems. Duke University: Department of Civil and Environmental Engineering.

13 -   Heikkinen.M. (1981). Solving the shape of the earth by using digital density models. Rep. Finnish Geod, 81.

14-  Heiskanen WA, Moritz M. (1967). Physical geodesy. Bulletin Géodésique, 86(1), 491-492.

15-  Klees R, Wittwer T. (2007). A data-adaptive design of a spherical basis function network for gravity field modelling. Dynamic Planet, 322-328.

16-  Klees R, Wittwer T. (2007). Local gravity field modelling with multi-pole wavelets. Dynamic Planet, 303-308.

17-  Klees.R , Tenzer. R , Prutkin.I , Wittwer.T. (2008). A data-driven approach to local gravity field modelling using spherical radial basis functions. Journal of Geodesy, 457-471.

18-  Lehmann R. (1993). The method of free-positioned point masses'geoid studies on the Gulf of Bothnia. Bulletin géodésique, 31-40.

19-  Lin M, Denker H, Müller J. (2015). Regional Gravity Field Modeling by Radially Radially Optimized Point Masses: Case Studies with Synthetic Data. Springer, 1-7.

20-  M.Schmidt,M.Fengler,T.Mayer-Gürr. (2007). Regional gravity modeling in terms of spherical base functions. Journal of Geodesy, 17-38.

21-  Marchenko A.N , Barthelmes F, Meyer U, Schwintzer.P. (2002). Efficient regional geoid computations from airborne and surface gravimetry data: a case study. Springer Berlin Heidelberg, 223-228.

22-    Marchenko A.N. (1998). Parameterization of the Earth's Gravity field, point and line singularities. Astronomical and Geodetic Society.

23-    Marchenko AN, Barthelmes F, Meyer U, Schwintzer P. (2001). Regional geoid determination: an application to airborne gravity data in the Skagerrak. Geoforschungszentrum, 50.

24-    Pavlis N.K, Holmes S.A, Kenyon S.C, Factor J.K. (2012). development and evaluation of the Earth Gravitational Model 2008 (EGM2008). Journal of Geophysical Research: Solid Earth, 118(B4).

25-    Schmidt M, Fabert O, Shum C.K. (2005). On the estimation of a multi-resolution representation of the gravity field based on spherical harmonics and wavelets. Journal of geodynamics, 39(5), 512-526.

26-    Schmidt M, Fabert O, Shum C.k, Han.S.C. (2004). Gravity field determination using multiresolution techniques. GOCE User Workshop: GOCE, The Geoid and Oceanography. Proc: ESA.

27-    Schmidt M, Fengler M, Mayer-Gürr T. (2007). Regional gravity modeling in terms of spherical base functions. Journal of Geodesy, 17-38.

28-    Vermeer M. (1982). The use of mass point models for describing the Finnish gravity field. Gävle. Sweden: 9th meeting of the Nordic Geodetic Commission.

29-    Vermeer M. (1983). A new SEASAT altimetric geoid for the Baltic.

30-    Vermeer M. (1984). Geoid studies on Finland and the Baltic.

31-    Vermeer M. (1995). Mass point geopotential modelling using fast spectral techniques; historical overview, toolbox description, numerical experiment. Manuscr. Geod, 20, 362-378.

32-    Wittwer TB. (2009). regional gravity field modelling with radial basis functions. TU Delft: Doctoral dissertation.