بررسی و تحلیل عملکرد فیلترهای مختلف استخراج عوارض غیرزمینی بر ابرنقاط متراکم حاصل از تصاویر با قدرت تفکیک مکانی بالا

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی گروه مهندسی نقشهبرداری، دانشگاه صنعتی نوشیروانی بابل

2 استادیار گروه مهندسی نقشهبرداری، دانشکده عمران، دانشگاه صنعتی نوشیروانی بابل

10.22131/sepehr.2022.251051

چکیده

فیلترینگ مدلهای رقومی سطح (DSM) برای برنامههای کاربردی مانند برنامهریزی محیطی، بهروزرسانی نقشه یا تشخیص ساختمان موردتوجه است. فیلتراسیون زمین، حذف نقاط متعلق به اشیاء بالاتر از سطح زمین بهمنظور بازیابی نقاط زمینی است که برای تولید مدل رقومی ارتفاع (DSM) استفاده میشود. ابرهای نقطهای لایدار موفقیتهای بسیاری در ارائهی عوارض داشتهاند اما از آنجا که اخذ دادههای لایدار هنوز یک فرآیند پرهزینه است، استفاده از ابرهای نقطه تولیدشده از فرآیند فتوگرامتری برای تولید DEM یک راهحل مناسب است. بااینحال، بیشتر الگوریتمهای فیلترینگ برای دادههای لایدار طراحیشده و به تنظیم تعدادی از پارامترهای پیچیده برای دستیابی بهدقت بالا نیاز خواهند داشت. درعینحال زمان پردازش، میزان تأثیرگذاری درصحنههای مختلف و میزان اتوماسیون این روشها نیز حائز اهمیت است. پیچیدگیهای صحنه و توپوگرافی، برای نمونه در مناطق شهری فرآیند فیلتراسیون زمین را با چالش بیشتری مواجه میکند. برای کسب نتایج بهینه کاربران باید پارامترهای مختلف را تا زمانی که نتیجه مطلوب فیلترینگ را پیدا کنند امتحان نمایند، که فرآیندی وقتگیر و پرهزینه است. به علت عدم وجود بررسی جامع از میزان کارایی، اتوماسیون و پیچیدگیهای محاسباتی روشهای فیلترینگ مختلف بر روی ابر نقاط حاصل از فتوگرامتری، در این پژوهش الگوریتمهای مختلف مطرح و پرتکرار در این زمینهی مطالعاتی با یکدیگر مقایسه شدند. درعینحال، روشهای موردمطالعه از منظر کیفیت فیلترینگ کلاسها، زمان پردازشها (مدتزمان اجرایی)، پیچیدگیهای صحنه و تعداد پارامترهای الگوریتم (بیانگر میزان دخالت کاربر در پردازش دادهها برای میزان اتوماسیون) مورد تحلیل قرار گرفت. نتایج این تحلیل میتواند در راستای شناخت بهتر عملکرد اجرایی روشهای فیلترینگ بر روی ابر نقاط حاصله از تصاویر باقدرت تفکیک بالا (DSMهای حاصله از تصاویر هوایی و پهپاد) مثمرثمر باشد و بهعنوان یک راهنما در جهت کمک به محققان برای تصمیمگیری در انتخاب الگوریتم مورداستفاده با توجه به پارامترهای زمان، سختافزار، منطقه و میزان دقت خروجی مفید باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Analyzing the performance of the different algorithms for extracting non-ground points on dense point clouds obtained from high spatial resolution images

نویسندگان [English]

  • Mina Mohammadi 1
  • Abbas Kiani 2
1 BSc student, Babol Noshirvani University of Technology, Mazandaran, Iran
2 Assistant professor, Dept. of Geomatics, Faculty of Civil Engineering, Babol Noshirvani University of Technology
چکیده [English]

Extended Abstract
Introduction
DEMs (digital elevation models) are of critical importance in different areas such as land use planning, infrastructural project management, soil science, hydrology and flow direction studies. Across greater spatial scales, their usage is the key for contouring topographic and relief maps. A DEM represents the bare surface, eliminating all natural and artificial features, while the digital surface model (DSM) captures both natural and artificial features of the environment. DSM is of significant interest for applications such as environmental planning, map updating, or building detection. Ground filtering is the removal of the points belonging to the above-ground objects in order to retrieve ground points to be used in generating DEM. DEM can be effectively obtained from LIDAR or digital photogrammetry. Lidar point clouds have great success in representing the objects they belong to; but since the Lidar data acquisition is still a costly process, using point clouds generated by the photogrammetric process to produce DSM is a reasonable alternative. Since DSM represents the information of surface of the land objects and is also affected by ground slope, it cannot be useful lonely for interpreting the data; therefore, to make optimal use of it, a distinction is required between the land and non-land pixels. On this basis, due to the large volume of the high-resolution images and with regard to complex urban structure, a fast yet simple and accurate method is desirable.
 
Material & Methods
Based on the filtering algorithms, the provided digital surface model is classified into ground and off-ground pixels. For all the off-ground pixels, the closest ground point is assumed to be the relevant low point, thus, through the height difference of the off-ground point with the assigned ground point, the so-called normalized height is computed. However, most of the filtering algorithms are mainly developed to filter Lidar data and will require the adjustment of a number of complex parameters to achieve high accuracy. At the same time, the processing time, degree of effectiveness in different scenes, and degree of automation of these methods are also important. Scene details and topographical complexity, for example in urban areas, make the filtering process even more challenging. For optimal results, users should try to adjust various parameters until they find the desired filtering result, which is a time-consuming and costly process. Due to the lack of a comprehensive study on the efficiency, automation, and computational complexity of different filtering methods on the points cloud obtained from photogrammetry, in this study, different and most widely used algorithms in this field of study were compared with each other. The studied methods were analyzed in terms of class filtering quality, processing time (execution time), scene complexity, and number of algorithm parameters (indicating the degree of user involvement in data processing to determine the amount of automation). Results of this analysis can be useful in order to better understanding the performance of filtering methods on the DSM obtained from high resolution images (dense point clouds from aerial and UAV images). In addition, it can be suitable for different users according to the parameters of time, hardware, scene type, and output accuracy.
 
Result & Discussion
Ground filtering is essential for DEM generation. In this paper, for ground filtering, at first, a suitable algorithm was selected and, after setting the initial parameters, they were applied to the point clouds. Comparing the obtained results, it can be seen that in the building class with sloping roofs, Morph and ATIN methods performed better, but in buildings with flat roofs, only Morph method had good accuracy. In the mono-tree class, the Morph and ATIN methods in Metashape software were able to perform the separation well, and in the tree row class, both methods performed well. The ATIN method in Metashape software was able to differentiate the road class more accurately than other methods. It also performed well in the river class. Therefore, according to the results of this study, if the goal is to identify high tolls in urban areas, due to the lower computational cost of the Morph method than the ATIN method, the Morph method is recommended. But if the goal is to produce good quality DTM, the ATIN method will be the priority.
 
Conclusion
In this research, ATIN, ETEW, MLS, MORPH1D, and MORPH2D algorithms for land extraction were evaluated. Thus, first the algorithms were examined on the test data and, then, the results were analyzed with the ground true images. In this study, five filtering methods were examined and compared on three images of urban areas, which included various natural and human-made features, including streets, trees, and buildings. The data were related to the digital aerial imagery taken by Intergraph/ZI DMC sensor in Vaihingen city, Germany. DSM data sets were defined on the grid with the ground resolution of 9°cm. Comparing the results of all the three data sets, it can be seen that the difference in accuracy between the one- and two-dimensional morphology algorithms was very small and they had similar performance. In terms of processing time, the ATIN method had longer execution time than other methods and the ETEW method had shorter execution time than other algorithms. Also, the number of algorithm parameters indicated the degree of user participation in data processing. Therefore, due to the point that the ETEW algorithm had fewer parameters, its degree of automation was higher than other algorithms. Comparing and reviewing the results obtained from the test data demonstrated that MLS and ETEW algorithms had the lowest efficiency in the urban area. On the other hand, in features such as buildings with sloping roofs, single trees, and tree rows, two ATIN and Morph algorithms provided favorable results. According to the obtained results, the suitable algorithm was Morph algorithm for flat-roofed buildings and ATIN algorithm for road and parking. In general, it is recommended to use the Morph algorithm for urban and small areas due to time savings and less effective parameters.

کلیدواژه‌ها [English]

  • High resolution images
  • Digital Surface Model
  • Lidar filtering
  • Dense point cloud
  • DEM
1- Abdullah, A., Vojinovic, Z., Price, R., & Aziz, N. (2012). A methodology for processing raw LiDAR data to support urban flood modelling framework. Journal of Hydroinformatics, 14(1), 75-92.
2- Axelsson, P. (2000). DEM generation from laser scanner data using adaptive TIN models. International archives of photogrammetry and remote sensing, 33(4), 110-117.
3- Baltsavias, E. P. (1999). A comparison between photogrammetry and laser scanning. ISPRS Journal of photogrammetry and Remote Sensing, 54(2), 83-94.
4- Brunn, A., & Weidner, U. (1997). Extracting buildings from digital surface models. International Archives of Photogrammetry and Remote Sensing, 32(3 SECT 4W2), 27-34.
5- Capaldo, P., Crespi, M., Fratarcangeli, F., Nascetti, A., & Pieralice, F. (2012). DSM generation from high resolution imagery: applications with WorldView-1 and Geoeye-1. Italian Journal of Remote Sensing/Rivista Italiana di Telerilevamento, 44(1).
6- Chen, Q., Gong, P., Baldocchi, D., & Xie, G. (2007). Filtering airborne laser scanning data with morphological methods. Photogrammetric Engineering & Remote Sensing, 73(2), 175-185.
7- Demir, N., Sönmez, N. K., Akar, T., & Ünal, S. (2018). Automated measurement of plant height of wheat genotypes using a DSM derived from UAV imagery. Paper presented at the Multidisciplinary Digital Publishing Institute Proceedings.
8- Gevaert, C., Persello, C., Nex, F., & Vosselman, G. (2018). A deep learning approach to DTM extraction from imagery using rule-based training labels. ISPRS Journal of Photogrammetry and Remote Sensing, 142, 106-123.
9- Julzarika, A. (2020). Utilization of DSM and DTM for Spatial Information in Lake Border. Paper presented at the IOP Conference Series: Earth and Environmental Science.
10- Kiani, A., Ahmadi, F. F., & Ebadi, H. (2021). Correction of training process in object-based image interpretation via knowledge based system capabilities. Multimedia Tools and Applications, 1-24.
11- Lemaire, C. (2008). Aspects of the DSM production with high resolution images. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 37(B4), 1143-1146.
12- Menderes, A., Erener, A., & Sarp, G. (2015). Automatic detection of damaged buildings after earthquake hazard by using remote sensing and information technologies. Procedia Earth and Planetary Science, 15, 257-262.
13- Nex, F., & Gerke, M. (2014). Photogrammetric DSM denoising. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 40(3), 231.
14- Podobnikar, T., Stancic, Z., & Oštir, K. (2000). Data integration for the DTM production. Paper presented at the International Cooperation and Technology Transfer, Proceedings of the Workshop.
15- Rottensteiner, F., Sohn, G., Gerke, M., & Wegner, J. D. (2013). ISPRS test project on urban classification and 3D building reconstruction. Commission III-Photogrammetric Computer Vision and Image Analysis, Working Group III/4-3D Scene Analysis, 1-17.
16- Serifoglu, C., Gungor, O., & Yilmaz, V. (2016). Performance Evaluation of different ground filtering Algorithms for UAV-BASED point clouds. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, 41.
17- Serifoglu Yilmaz, C., Yilmaz, V., & Güngör, O. (2018). Investigating the performances of commercial and non-commercial software for ground filtering of UAV-based point clouds. International Journal of Remote Sensing, 39(15-16), 5016-5042.
18- Sithole, G., & Vosselman, G. (2003). Comparison of filtering algorithms. Paper presented at the Proceedings of the ISPRS working group III/3 workshop.
19- Sithole, G., & Vosselman, G. (2005). Filtering of airborne laser scanner data based on segmented point clouds. International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 36(part 3), W19.
20- Sulaiman, N. S., Majid, Z., & Setan, H. (2010). DTM generation from LiDAR data by using different filters in open–source software. Geoinformation Science Journal, 10(2), 89-109.
21- Vosselman, G. (2000). Slope based filtering of laser altimetry data. International Archives of Photogrammetry and Remote Sensing, 33(B3/2; PART 3), 935-942.
22- Wang, C.K., & Tseng, Y.H. (2010). DEM generation from airborne LiDAR data by an adaptive dual-directional slope filter: na.
23- Yilmaz, C. S., Yilmaz, V., & Gungor, O. (2017). Ground Filtering of a UAV-based Point cloud with the Cloth Simulation Filtering Algorithm. Paper presented at the Proceedings of the International Conference on Advances and Innovations in Engineering (ICAIE), Elazig, Turkey.
24- Yilmaz, V., Konakoglu, B., Serifoglu, C., Gungor, O., & Gökalp, E. (2018). Image classification-based ground filtering of point clouds extracted from UAV-based aerial photos. Geocarto international, 33(3), 310-320.
25- Zhang, K., Chen, S.C., Whitman, D., Shyu, M.L., Yan, J., & Zhang, C. (2003). A progressive morphological filter for removing nonground measurements from airborne LIDAR data. IEEE transactions on geoscience and remote sensing, 41(4), 872-882.
26- Zhang, K., & Whitman, D. (2005). Comparison of three algorithms for filtering airborne lidar data. Photogrammetric Engineering & Remote Sensing, 71(3), 313-324.
27- Zhang, S., Han, F., & Bogus, S. M. (2020). Building Footprint and Height Information Extraction from Airborne LiDAR and Aerial Imagery. Paper presented at the Construction Research Congress 2020: Computer Applications.
28- Zhao, X., Guo, Q., Su, Y., & Xue, B. (2016). Improved progressive TIN densification filtering algorithm for airborne LiDAR data in forested areas. ISPRS Journal of Photogrammetry and Remote Sensing, 117, 79-91.
29- Zhu, X., Pang, G., Chen, P., Tao, Y., Zhang, Y., & Zuo, X. (2020). Research on Urban Construction Land Change Detection Method Based on Dense Dsm and Tdom of Aerial Images. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences, 42, 205-210.