ارائه یک روش جدید مبتنی بر الگوریتم SMQT به منظور بارزسازی تصاویر هوایی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه سنجش از دور و GIS، دانشکده منابع طبیعی و محیط‌زیست، واحد علوم و تحقیقات، داﻧﺸﮕﺎه آزاد اسلامی، تهران

2 استادیار گروه سنجش از دور و GIS، دانشکده منابع طبیعی و محیط‌زیست، واحد علوم و تحقیقات،داﻧﺸﮕﺎه آزاد اسلامی، تهران

10.22131/sepehr.2022.251060

چکیده

عدم تابش یکنواخت نور بر عوارض، سبب کاهش میزان کنتراست در تصاویر هوایی شده و استخراج ویژگی­های تصویر را مشکل می­سازد. عدم نوردهی مناسب باعث کاهش کنتراست تصویر و تشکیل سایه یک عارضه بر عوارض دیگر میشود، در نتیجه سبب از بین رفتن اطلاعاتی در مورد رفتار، شکل، اندازه­، الگو، بافت و تن عوارض شده و سبب فشردگی هیستوگرام تصویر در یک یا چند ناحیه خاص میشود. در این پژوهش از دو تصویر هوایی با تنوع عوارض پوشش گیاهی، خاک و دست­ساخت بشر استفاده شد. در مرحله اول از روش پیشنهادی تحقیق حاضر، ابتدا الگوریتم SMQT بر تصویر اعمال گردید. این تبدیل با نشان دادن ساختار دادهها، ویژگی­های Gain و Bias دادهها را حذف میکند. خروجی الگوریتم SMQT تصویر خاکستری میباشد. برای حفظ اطلاعات رنگی موجود در تصویر اصلی، تصویر RGB ورودی با تصویر حاصل از الگوریتم SMQT  ادغام گردید. در مرحله­ دوم، تصحیح گاما به میزان 0/7 به کل تصویر اعمال شد. تصحیح گاما، فرآیندی است که برای تصحیح پاسخ قانون توان رخ میدهد. میزان تصحیح گاما در همه قسمت­های یک تصویر یکسان نیست اما  اعمال این تصحیح بهصورت محلی و با استفاده از کرنل به ابعاد مشخص، سبب افزایش محاسبات و زمان می­شود و در صورت وجود نویز در تصویر، انحراف شدید در میزان تصحیح بهوجود می­آورد. برای حل این مشکل، مجدداً بر روی تصویر بهدست آمده از تصحیح گاما، الگوریتم SMQT اعمال شد. این عمل با فشرده­سازی محدوده­ی داینامیک رنج بهوسیله­ی کشش هیستوگرام تصویر، در قسمت­هایی از تصویر که نیاز به تصحیح گاما نداشت، ساختار داده را بدون تغییر باقی گذاشت. خروجی حاصل از الگوریتم SMQT در مرحله دوم با تصویر حاصل از تصحیح گاما، ادغام شد. معیار شباهت ساختاری برای تصاویر ورودی بهترتیب برابر 0/4352 و 0/4161 و برای تصاویر پردازش ­شده برابر 0/8372 و 0/8401 میباشد.

کلیدواژه‌ها


عنوان مقاله [English]

Introducing a new method based on SMQT algorithm for aerial image detection

نویسندگان [English]

  • Seyed Mehdi Yavari 1
  • Zahra Azizi 2
1 Ph.D. Student, Department of remote sensing and GIS , Science and Research Branch,Islamic Azad University, Tehran, Iran
2 Assistant professor, Department of remote sensing and GIS , Science and Research Branch, Islamic Azad University, Tehran, Iran
چکیده [English]

Extended Abstract
Introduction
Lack of uniform light radiation on the objects, reduces the amount of contrast in the images and makes it difficult to extract image features. This problem destroys information about the behavior, shape, size, pattern, texture, and tone of the effects, and compresses the image histogram in one or more specific areas. UAV images have been widely used in recent years due to their extensive coverage, high operating speed, use in hard-to-reach areas and up-to-date equipment. If drone images are correctly taken and pre-processed, they provide good accuracy for a variety of applications. The preprocessing is important since the image acquisition conditions cannot be changed in most cases so that the acquired images are contaminated with some distortions or errors which must be removed or their effect reduced to a minimum before any process. Improving the exposure in the image, which increases the amplitude of the histogram, can highlight features with similar gray-scale values, and this is useful in identification.
 
Materials & Methods
In this study, two aerial images have been used with a variety of vegetation, soil and man-made features using Storm 2 hexacopter drone in Simorgh city (Kiakla) in Mazandaran province with longitude and latitude 52⸰ 54' 1'' and 36⸰ 35' 49''.  At first the SMQT algorithm is applied to the input images. So the bits number of the input image is calculated to determine the number of transmission levels. Then with rgb2gray command creates a gray image of the original image. The overall average of the image is calculated and the DN of each pixel is compared to the average. If the DN is greater than the pixel value, the number 1 is assigned to the pixel, otherwise the number zero in another image is assigned to the pixel. The average calculation and segmentation of pixels based on the number of bits continues, each segmentation is called a transfer. Then, by converting the data from these divisions into values in the spectral range of the image, a new image is created. This image has higher radiometric resolution than the original input image but lower spectral resolution. For this reason, the image is fused. Global gamma correction is applied to the fused image. Finding gamma in the image, especially local gamma is time consuming and complex for programming and computing. Therefore, to increase the computing speed, a local gamma of 0.7 was applied to the whole image and then the first step processes are applied again and finally, the SSIM index is checked for image enhancement.
Results & Discussion
The SSIM value for input image 1 and 2 is 0.8372 and 0.8401 while this value before processing was 0.4352 and 0.4161. Examining the histogram of the images before and after processing, in all three bands R, G and B, shows the stretch of the image histogram in the range of 0 to 255. There is a decrease in the number of peaks and valleys in the histogram of the processed images. The density function for input and processed images shows that the more homogeneous the number of effects in the image, the greater the slope of the function graph. The value of the density function has increased after processing, which is due to the stretching of the image histogram. SSIM is used to validate the results in this study. The images have been visually improved significantly, but this is not enough for verification. The goal of quantitative quality recognition is to design computational methods that can accurately and automatically express image quality, which affects all the image pixels in the same way. The SSIM range is between (+1 and 0). The closer the measured value for an image to one, the better image quality will be. SMQT also has less computational complexity and less configuration. If the image of a light object is formed in a completely dark background (such as night shooting), this algorithm does not work in the background pixels. Examining the image samples taken from a complication at night, it was found that the black pixels changed color to purple after fusion. In order to optimize the algorithm, it is suggested to increase the efficiency of the algorithm by examining the spectral behavior of different features in different color spaces and integrating their effective components in image or feature highlighting or the use of plant or soil indicators. The fuzzy method can also be used for semi-shady areas. These improvements should also prevent complexity of computing by increasing efficiency.

کلیدواژه‌ها [English]

  • SMQT Algorithm
  • Gamma correction
  • Image fusion
  • SSIM
  • Histogram
  1. 1- آقابابایی، موسوی، خزائی‌پول، خویشه؛ مجید، سید محمدرضا، پیمان، محمد، 1396. "بهبود کیفیت تصاویر در ناوبری پهپاد با استفاده از روش فراتفکیک‌پذیری مبتنی برشبکه عصبی کانولوشنی با نگاشت چندلایه". فصلنامه علمی - پژوهشی دریافنون. شماره1. شماره پیاپی7. دوره 4. صفحه 1 تا 11.

    2- باباپور، مختارزاده، ولدان زوج، مدیری؛ هادی، مهدی، محمدجواد، مهدی، 1393. "بهینه‌سازی مدل ریاضی فوریه به کمک الگوریتم ژنتیک جهت مدل‌سازی رفتار خطای هندسی در دوربین‌های رقومی هوایی مطالعه موردی: دوربین رقومی UltraCam". فصلنامه علمی - پژوهشی اطلاعات جغرافیایی(سپهر)، شماره92. دوره 23. صفحه 95 تا 109.

    3- حسن‌پور، اسدی‌‍امیری؛ حمید، سکینه، 1395. "ارائه روشی برای پیش‌پردازش تصویر جهت بهبود عملکرد JPEG". فصلنامه علمی پژوهشی پردازش علایم و داده‌ها. شماره2. دوره 28. صفحه 105 تا 120.

    1. رنجبران، هادی، 1393. "آمار و احتمال کاربرد آن در مدیریت و حسابداری". انتشارات اثبات. چاپ سی­ام.
    2. صالحی، گمرکی، عزیزی، صادقیان؛ علیرضا، معصومه، زهرا، حامد، 1395. "تعیین و تشخیص خودکار تاج درخت در تصویر دیجیتال UltraCam-D". فصلنامه علمی پژوهش و توسعه جنگل. شماره3. دوره 2. صفحه 241 تا 256.
    3. صمدزادگان، طبیب محمودی، بیگدلی؛ فرهاد، فاطمه، بهناز، 1392. "ادغام داده‌ها در سنجش از دور مفاهیم و روش‌ها". انتشارات دانشگاه تهران. چاپ دوم.
    4. مرتضوی؛ سیدعلی، 1394. "بهبود تصویر بر پایه متد متعادل‌سازی هیستوگرام زیر تصویر دو جزئی سطح برابر". اولین کنفرانس سالانه تحقیقات کاربردی در مهندسی برق، کامپیوتر. مؤسسه عالی علوم و فناوری خوارزمی. شیراز. مقاله پوستری. تعداد صفحه: 6.
    5. نوحه‌گر، عبداللهی کاکرودی، امیری، سرسنگی؛ احمد، عطااله، ونوس، علیرضا، 1393. "ارزیابی تکنیک‌های بارزسازی در شناسایی سایت باستانی با استفاده از تصویر سنجنده ASTER منطقه بشاگرد استان هرمزگان". همایش ملی کاربرد مدل‌های پیشرفته تحلیل فضایی (سنجش ازدور و GIS) درآمایش سرزمین. دانشگاه آزاد اسلامی واحد یزد. مقاله پوستری. تعداد صفحه:10.
    6. Banik, Partha Partim. Saha, Rappy. Kim, Ki-doo. 2018. “Contrast enhancement of low-light image using histogram equalization and illumination adjustment”. International Conference on Electronics, Information, and Communication (ICEIC), Honolulu, HI, USA, https://doi.org/10.23919/ELINFOCOM.2018.8330564
    7. Fayaz Ali Dharejo, Zhou Yuanchun, Deeba Farah, Munsif Ali Jatoi, Yi Du. Wang Xuezhi. 2020. “A remote-sensing image enhancement algorithm based on patch-wise dark channel prior and histogram equalisation with colour correction”. IET Image Processing, Volume 15, Issue 1, Pages 47-56, https://doi.org/10.1049/ipr2.1200411.
    8. Gao Tao, Li Kun, Chen Ting, Liu Mengni, Mei Shaohui, Xing Ke, Li Yong Hui, 2020, “A Novel UAV Sensing Image Defogging Method”, Volume 13, Pages 2610 -2625, https://doi.org/10.1109/JSTARS. 2020. 2998517
    9. Ghilani Charles D., 2010, “Adjustment Computations: Spatial Data Analysis”, 5th Edition, John wiley, 672 Pages, ISBN: 978-1-119-38598-1
    10. Gonzalez Rafael C., Woods Richard E., Eddins Steven L., 2009 “Digital Image Processing Using MATLAB, Gatesmark Publishing”, 826 Pages, ISBN-10: 0982085400
    11. Huang Wei, Bu min, 2015, "Detecting shadows in high-resolution remote-sensing images of urban areas using spectral and spatial features", International Journal of Remote Sensing , Volume 36, - Issue 24, Pages 6224-6442, https://doi.org/10.1080/01431161.2015.1113329
    12. Olsson Per-Ola, Vivekar Ashish, Adler Karl, Millan Virginia Garcia, Koc Alexander, Alamrani Marwan, Eklundh Lars, 2018, “Radiometric Correction of Multispectral UAS Images: Evaluating the Accuracy of the Parrot Sequoia Camera and Sunshine Sensor”, Journal of Computers & Electrical Engineering, Volume 13, Issue 4, Pages 577-595, https://doi.org/10.3390/rs13040577
    13. Paine David P, Kiser James D., 2012, “Aerial Photography and Image Interpretation”, 3th Edition, John wiley, 637 Pages, ISBN 978-1-118-11102-4
    14. Raju G., Nair Madhu S., 2014, “A fast and efficient color image enhancement method based on fuzzy-logic and histogram”, AEU - International Journal of Electronics and Communications, Volume 68 ,Issue 3, Pages 236-243, https://doi.org/10.1016/j.aeue.2013.08.015
    15. Seema Rani, Manoj Kumar, 2014, “Contrast Enhancement using Improved Adaptive Gamma Correction with Weighting Distribution Technique” , International Journal of Computer Applications (0975 – 8887) Volume 101, Issue 11, Pages 16-31, http://dx.doi.org/10.5120/17735-8849

    19.Singh Himanshu, Kumar Alil, Balyan L.K, Singh G.K, 2018, “Swarm intelligence optimized piecewise gamma corrected histogram equalization for dark image enhancement”, Journal of Computers & Electrical Engineering, Volume 70, Pages 462-475, https://doi.org/10.1016/j.compeleceng.2017.06.029

    1. Turner Darren, Lucieer Arko, Watson Christopher, 2012, “An Automated Technique for Generating Georectified Mosaics from Ultra-High Resolution Unmanned Aerial Vehicle (UAV) Imagery, Based on Structure from Motion (SfM) Point Clouds”, Remote Sensing, Volume 4, Issue 5, Pages 1392-1410 , https://doi.org/10.3390/rs4051392
    2. Wang, Zhou, Bovik, A.C., Sheikh, H. R., Simoncelli, E. P., 2004. “Image quality assessment: From error visibility to structural similarity”, IEEE Transactios on Image Processing, volume 13, Issue 4, Pages 600-612. https://doi.org/10.1109/TIP.2003.819861
    3. Wu Xiaolin , Yong Zhao, 2010, “A New Algorithmic Approach for Contrast Enhancement”, European Conference on Computer Vision, Berlin, Volume 6316, Pages 351-363, https://doi.org/10.1007/978-3-642-15567-3_26
    4. Yavari Seyed Mehdi, Amiri Hamid, 2019, “Effect of shadow removal by gamma correction in SMQT algorithm in environmental application”, Environment, Development and Sustainability, Volume 22, https://doi.org/10.1007/s10668-019-00528-9
    5. Yu Wenyong, Yao Haiming, Li Dan, Li Gangyan, Shi Hui, 2021, “GLAGC: Adaptive Dual-Gamma Function for Image Illumination Perception and Correction in theWavelet Domain”, Sensors, Volume 21, Issue 845, doi.org/10.3390/s21030845
    6. Zhu Ruoning, Guo Zhengqi, Zhang Xiaoli, 2021, “Forest 3D Reconstruction and Individual Tree Parameter Extraction Combining Close-Range Photo Enhancement and Feature Matching”, Remote Sensing, Volume 13, Issue 9, https://doi.org/10.3390/rs13091633