بررسی پیش نشانگرهای ابر زلزله و تغییرات دمایی در شناسایی گسل های مسبب زمین لرزه مطالعه موردی: زلزله محمدآباد ریگان (7 بهمن 1389)

نوع مقاله: مقاله پژوهشی

نویسندگان

1 کارشناس ارشد ژئوفیزیک، گروه ژئوفیزیک دانشگاه تحصیلات تکمیلی صنعتی و فناوری پیشرفته کرمان

2 استادیار گروه ژئوفیزیک، دانشگاه تحصیلات تکمیلی صنعتی و فناوری پیشرفته کرمان

چکیده

 در این مقاله تشکیل ابر زلزله بهعنوان پیشنشانگری که تاکنون کمتر شناختهشده  و همچنین پیشنشانگر تغییرات دمایی، در زلزله محمدآباد ریگان بررسیشده است. در هنگام افزایش تنش در منطقه شکستگیهای اولیه ایجادشده و با بالا رفتن دما شاهد تبخیر آبهای موجود در شکستگیهای بین سنگ خواهیم بود. در صورت وجود شرایط جوّی مناسب برای مثال؛ یک روز سرد- این بخارها میتوانند به ابر تبدیل شوند. از آنجایی که منبع تولید این ابر ساکن است، لذا با وجود باد، موقعیت این ابر ثابت میماند و همین مسئله راه شناسایی ابرهای زلزله است. در بخش اول تصاویر پانکروماتیک زلزله ریگان از 62 روز قبل از زمینلرزه دریافت شدند، پس از دریافت تصاویر پانکروماتیک، زمین مرجع نمودن تصاویر خام ماهوارهای انجام شد. مشاهدات نشان دادند که راستای ابر زلزله از 10 روز مانده به زمینلرزه (17 ژانویه) قابل شناسایی بود. در این تصاویر ابر زمینلرزه بهصورت رقومی استخراجشده و این نتایج بر روی تصویر توپوگرافی منطقه موردمطالعه قرار داده شد. در بخش دوم، محتوای دمایی باندهای حرارتی (باندهای 31 و 32) تصاویر ماهوارهMODIS استخراج شد و سری زمانی دمای سطح زمین تشکیل داده شد. سپس تأثیر عوامل جوی از سری زمانی کاسته شد و در مرحله بعد پالایه موجک بر این سری زمانی اعمال شد. با اعمال آزمون انحراف معیار از سری زمانی پالایه شده، وجود بیهنجاری دمایی 2 روز مانده به زمینلرزه آشکار گردید. همچنین در بخش دیگری از مقاله با رنگی کردن تصاویر ماهوارهای و تشکیل یک سری زمانی از این دادهها راستای گسل مسبب زمینلرزه مشخص شد.
نهایتاً با مقایسه روند ابر زمینلرزه با سازوکار کانونی و راستای ناحیه افزایش دما یافته، هماهنگی بالایی بین آنها مشاهده شد. با این مقایسه میتوان تشکیل ابر زلزله مورد بررسی را به زمینلرزه ریگان نسبت داد. همچنین ناحیه افزایش دمایی را میتوان با احتمال زیاد به رویداد زمینلرزه منتسب نمود.
 

کلیدواژه‌ها


عنوان مقاله [English]

Investigating the precursors of earthquake cloud and temperature changes in identifying earthquake-causing faults Case Study: The earthquake in Mohammad-Abad-e-Rigan (January 27, 2011)

نویسندگان [English]

  • sina saber mahani 1
  • Mohammadreza Sepahvand 2
1 M.Sc. Geophysics, Department of Geophysics, Graduate University of advanced technology, Kerman, Iran
2 Assistant Professor, Department of Geophysics, Graduate University of advanced technology, Kerman, Iran
چکیده [English]

Extended Abstract
Since Iran is located on the Alpine-Himalayan seismicbelt and it has high seismicity, study of earthquake seismologyis necessary. Part of alpine-Himalayan seismic belt is Iranplateau that demonstrates high seismicity behavior and it has uniquedeformation.
Seismotectonic studies indicate a high density of active fault existencein this plateau. In all of Iran seismotectonic regime, eastof Iran seismotectonic zone due to the presence of strike slipfault system and occurrence of large earthquakes has a greatimportance. Destructive earthquakes such as 6.6Mw Bam (2006)and 6.7 MwRigan (2010) revealed high potential of earthquakeoccurrence. Intended area in this study is Rigan that is located in Kerman province in Iran.  This area has important faults such as Kahurak, Bam, Nosratabad, Shahdad, Guk, Golbaf, Sirch and Sabzevaran which have high seismicity.
In this paper, we consideredcloud formation as earthquake precursor for Mohammad Abad-Rigan’s earthquake (2011) that is known less. Thermal precursor was also consideredin this study. According to the existing theories, Rises in stresscan produce initial fracture in the region. Therefore, with the rise intemperature, water evaporation in the pores of stone is created. Whenvapor has appropriate condition (for example; lower temperature and existingenough water), it convert to clouds. One of the fantastic features of this phenomenon is that, these clouds cannot move in the presence of wind, Because of the steady source of their generations. This fact is a distinguishable thing for recognizing thiscloud among other clouds. In the first part, panchromatic images of62days before the event were taken and then theserow images were geo-referenced. Thus, earthquake clouds were digitally extracted andthe results were superposed on the topographic map of the intended region. It should also be mentioned that earthquake clouds were detected 10 days priorto the earthquake (January 17th).A period of 10 days is a suitabletime for making decisions in decision making organizations such as, Governorates, Municipalities, etc. Verdict basedon earthquake clouds is not enough for a good conclusion about earthquake occurring, and it is necessarythat we apply other precursors and pre-indicators, one of which is thermalinfrared that has great results.
In another part of the study, temperature content of thermal bands (bands 31 and 32) ofMODIS is extracted and Land Surface Temperature (LST) time serieswere created. Temperature variations are always considered as animportant and effective factor in earthquake phenomenon studying. Thermal anomalycan be seen within 1-24 days before earthquake and thetemperature increases 5 to12 degrees and then return to the previousmode after the earthquake. Some other researchers presented the increaseof 2 to 10 degrees. The idea that earthquake may be interrelated withtemperature was proved by applying it in Russia, China and Japan. However, notice that thermal anomaly may occur due to otherreasons except earthquake. When it is because of earthquake, actuallyit is because of the stress existing in the underground layersand changes in soil properties. Zuji et al. (1990) provedthat gases such as methane, carbon dioxide and hydrogen are releasedfrom soil cracks before earthquake which lead to intensification ofchlorofluorocarbons (CFC) and magnetic fields of the earth. There aresome other theories about this phenomenon such as piezoelectric andexpansion forces of the elastic strain that increase temperature.
Aftergetting images from NASA website and preprocessing them by deduction ofAir temperature time series from LST time series, atmospheric effectsthat exist because of the weather condition is eliminated. Obtainedsignal was some noisy. In the next step, the waveletas a powerful filter is applied to time series. Forextracting Interpretable results, Statistical test such as standard deviation mustbe perform on filtered time series.  Standard deviation (ST) cancreate normal limited area. By using limited area that producedby ST, thermal anomaly is detected 2 days prior tothe earthquake. Also, with colorization of thermal images and then creationof visual time series, strike of fault line is found.
Finally, by Comparingthe earthquake cloud line, focal mechanismandhigh temperature zone, high correlation was found. These results showthe observed cloud related to Rigan’s earthquake and also showthe high temperature zone related to earthquake event.
Resultsof this study can be used in two aspects, oneof which is the application in early warning system and the otheris the application in geology usage. Second usage helps geophysicist andgeologist to detect hidden and caused fault.
 

کلیدواژه‌ها [English]

  • Earthquake precursor
  • Earthquake clouds
  • Thermal precursor
  • Mohammad Abad-e-Rigan
  • Focal mechanism
  • Satellite images

1- صابر ماهانی، س. و م. سپهوند (1393). استفاده از پیش‌نشانگر گرما لرزه‌ای و کاربرد پالایه‌ موجک در زلزله‌های زرند (1383)، راور (1383)، ریگان (1389) و گوهران (1392). نوزدهمین همایش انجمن زمین‌شناسی ایران. تهران، ایران.

2- Baili, J., SamerLahouar, M. Hergli, I. Al-Qadi and KamelBesbes (2009). "GPR signal de-noising by discrete wavelet transform.” NDT&E International 42: p. 696-703

3- Choudhury, A. K. S. S. (2005). “Thermal Remote Sensing Technique in the Study of Pre-Earthquake Thermal Anomalies.” J. Ind. Geophys. Union 9, 197-207.

 4- Fugal, D. L. (1994). “Conceptual Wavelet In Digital Signal Processing.” Space & Signal Technical Publishing.

G.M., G. and W. B. (2008). “Cloud anomaly before Iran earthquake.” Internation journal of remote sensing 29(7): p. 1921-1928.

5- Guangmeng, G. and Y. Jie (2013) “Three attempts of earthquake prediction with satellite cloud images.” Natural Hazard and earth system scince 13: p. 91-95.

6- L.I., M. (1997). “Dynamics of cloudy anomalies above fracture regions during natural and anthropogenically caused seismic activities.” Fizika Zemli 9: p. 94-96.

7- LAY, T. and T. C. WALLACE (1995). Modern Global Seismology. United States of America, Elsevier.

8-Nemati, M. (2015). “Aftershocks investigation of 2010 Dec. and 2011 Jan. Rigan earthquakes in the southern Kerman province, SE Iran.” Journal of Tethys: (2) 3  p. 96-113.

9- Oke, T. R. (1987). “BOUNDARY LAYER CLIMATES.” New York, Hasteld.

10-Ouzounov, D. and F. Freund (2004). “Mid-infrared emission prior to strong earthquakes analyzed by remote sensing data.” elsevier.

11- Q. Zuji, X. X. and D. Changgong (1990) “Thermal anomaly-precursor of impending earthquake.” Chinese Science Bulletin35 (17): 1324-1327.

 12- Saradjian, M. R. and M. Akhoondzadeh (2011). “prediction of the date, magnitude and affected area of impending strong earthquakes using integration of multi precursors earthquake parameters.” Natural Hazards and Earth System Science.

13- Saraf, A. K., V. Rawat, P. Banerjee, S. Choudhury, S. K. Panda, S. Dasgupta and J. D. Das (2008). “Satellite detection of earthquake thermal infrared precursors in Iran.” Natural Hazard 47: p. 119-135.

14- Saraf, A. K., V. Rawat, S. Choudhury, S. Dasgupta and J. Das (2009). “Advances in understanding of the mechanism for generation of earthquake thermal precursors detected by satellites.” International Journal of Applied Earth Observation and Geoinformation 9: 373-379.

15- Shou, Z. and D. Harrington (2004).“BAM EARTHQUAKE PREDICTION & SPACE TECHNOLOGY.” Seminars of the United Nations Programme on Space Applications 16: 39-63.

16- Shuguang, Q. and G. Guangmeng (2012). “Clouds Anomaly before Italy 6.0 Earthquake.” EMSEV, 2012,  Gotemba Kogen resot, JAPAN: p. 1-11.

17-Tramutoli, V., C. Aliano, R. Corrado, C. Filizzola, N. Genzano, M. Lisi, G. Martinellic and N. Pergola (2012). “On the possible origin of thermal infrared radiation (TIR) anomalies in earthquake-prone areas observed using robust satellite techniques (RST).” Chemical Geology 339: p. 157-168.

18-Tronin, Hayakawa and Molchanov (2002). “Thermal IR satellite data application for earthquake research in Japan and China.” J. Geodynamics 33, 519-534.

19- Tronin, A. A. (2010). “Satellite Remote Sensing in Seismology. A Review.” Remote Sensing 2: 124-150.