تهیه نقشه سطوح نفوذناپذیر به عنوان یک شاخص زیست محیطی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 کارشناس ارشد مهندسی منابع طبیعی- محیط زیست، دانشکده منابع طبیعی، دانشگاه صنعتی اصفهان

2 استادیار محیط زیست، دانشکده منابع طبیعی، دانشگاه صنعتی اصفهان

چکیده

به منظور برنامه ریزی و مدیریت شهری خصوصاً در راستای نیل به توسعه پایدار در نواحی شهری و استفاده بهینه از سرزمین، دسترسی به اطلاعات صحیح و به هنگام از وضعیت کاربری و پوشش اراضی شهری بسیار ضروری است. سطوح نفوذناپذیر یکی از اجزاء پوشش شهری به شمار می روند که نقش مؤثری در تغییر سیمای سرزمین و کیفیت محیط زیست شهری دارند. با توجه به اهمیت این سطوح، روش های مختلفی برای تهیه نقشه پوشش نفوذناپذیر و بررسی تغییرات آن با استفاده از تصاویر ماهوارهای وجود دارد. این روش ها را می توان در پنج گروه کلی: طبقه بندی زیرپیکسل، طبقه بندی شبکه عصبی، طبقه بندی با استفاده از مدل VIS، مدل رگرسیون درختی، آنالیز ترکیب طیفی خلاصه کرد. به طور کلی هر یک از این روش ها مزایا و معایب خود را داشته ولی اکثراً از آنها برای طبقه بندی و آشکارسازی تغییرات سطوح نفوذناپذیر استفاده می شود. در این بررسی ضمن تشریح سطوح نفوذناپذیر و اهمیت آن، روش های مختلف نقشه سازی این سطوح به اختصار شرح داده شده است.

کلیدواژه‌ها


عنوان مقاله [English]

Preparation of Infiltration Levels Mapping as an Environmental Indicator

نویسندگان [English]

  • Azadeh Zaeri Amirani 1
  • Alireza Sofyanian 2
1 Isfahan University
2 Isfahan University
چکیده [English]

Accessing correct and timely information about urban land use and coverage is especially important for urban planning and management, achieving sustainable development in urban areas and optimal application of land.Impenetrable surfaces are a part of urban coverage with an effective role in changing landform and the quality of urban environment. Regarding the importance of such surfaces, different methods of mapping impenetrable surfaces and investigating its changes with satellite imagery exist. These methods can be classified into five general groups: subpixel classification, neural network, classification with VIS model, regression tree model, and spectral composition analysis. Generally, each of these methods have their own advantages and disadvantages, but they are mostly used to detect and classify impenetrable surfaces. The present article investigate impenetrable surfaces and their importance, along with different methods of mapping these surfaces.

کلیدواژه‌ها [English]

  • Remote Sensing
  • impenetrable surfaces
  • Classification
  • detecting changes
1- Agency USEP(1993) The Watershed protection approach: Annual report 1992 (#EPA840-S-93-001).Washington, DC: US Environmental Protection Agency, Office of Water.

2- Agency USEP (2004) Protecting Water resources With smart growth (#EPA231-R-04-002). Washington, DC: US Environmental Protection Agency, Office of policy, Economics, and Innovation.

3-Arnold C. A., Gibbons, C.J. (1996) Impervious surface: the emergence of a key urban environmental indicator. American Planning Association Journal 62: 243-258.

 4- Breiman L., Friedman, J.H., Olshen, R.A. and Stone, C.J (1984). Classification and regression trees. The Wadsworth Statistics/Probability Series Wadsworth International group California, USA.358 pp.

5- Fazeli R; Soffianian, A.R.(2008) Urban land cover mapping using Aster Terra satellite images, a case study: Isfahan city, Iran. International conference on cartography and GIS.

6- Gibbons C.(1996) Impervious Surface Coverage: The Emergence of a Key Environmental Indicator. Journal of the American Planning Association. 62:2:243-258.

7- Min X., Pramod K.V. and Manoj K.A (2005). Decision tree regression for soft classification of remote sensing data. Remote Sensing of Environment. 97:322-336.

8- Ridd M.K.(1995) Exploring a V-I-S(Vegetation-impervious surface-soil) model for urban ecosystem analysis thorough remote sensing: comparative anatomy for cities. International Journal of Remote Sensing. 88:170-186.

9- Schueler T.R.(1994) The Importance of Imperviousness. Watershed Protection Techniques 1:100-111.

10- Slonecker E.T.,JENNINGS, D.B., and Garofalo, D.(2001) Remote sensing of impervious surfaces: A review. Remote Sensing Review 20:227.

11- Sugumaran R.(2001) Forest Land Cover Classification Using Statistical and Artificial Neural Network. Approaches Applied to IRS LISS-III Sensor. Geocarto International.16:39-44.

12- Weng Q., Lu D.(2005) A sub-pixel analysis of urbanization effect on Land surface Temperature and its interplay with impervious surface and Vegetation coverage in Indianapolis, United States. International Journal of Applied Earth Observation and Geoinformation. 10:68-83.

13- Yang L., Huang, C., Homer, C.G., Wylie B.K. and Coan M.J.(2003) An approach for mapping Large-area impervious surfaces: Synergistic use of Landsat 7 ETM+ and high spatial resolution imagery. Canadian Journal of Remote Sensing. 29:230-240.