مروری بر برخی از روش های آشکارسازی تغییرات با استفاده از داده های سنجش از دور

نوع مقاله: مقاله پژوهشی

نویسندگان

فوق لیسانس دانشکده منابع طبیعی دانشگاه صنعتی اصفهان

چکیده

آشکارسازی تغییرات فرآیند شناسایی تفاوت‌ها در وضعیت یک شیء یا پدیده به وسیله مشاهده آن در زمان‌های متفاوت است. آشکارسازی دقیق و به موقع تغییرات سیما و پستی و بلندی‌های سطح زمین پایه‌ای برای فهم بهتر روابط، برهم‌کنش‌های انسان و پدیده‌های طبیعی برای مدیریت و استفاده بهتر از منابع را فراهم می‌آورد. داده‌های سنجش از دور به علت بزرگنمایی زمانی آنها، تنوع طیفی و رادیومتریک، دید یکپارچه و فرمت رقومی مناسب برای پردازش در کامپیوتر، منبع داده شگرفی برای کاربردهای گوناگون آشکارسازی تغییرات محسوب می‌شوند. روش‌های زیادی به منظور بارزسازی تغییرات توسعه یافته‌اند که هر کدام از آنها دارای مزایا و معایبی هستند. برطبق مطالعات انجام شده این روش‌ها در محیط زیست‌های یکسان نتایج مختلفی را بدست می‌دهند. به طور کلی روش‌های بارزسازی تغییرات در 3 دسته گروه‌بندی می‌شوند: مقایسه پیش از طبقه‌بندی، مقایسه پس از طبقه‌بندی و روش‌های پیشرفته. در این مقاله برخی از این روش‌ها از جمله تفریق تصویر، تقسیم تصویر، تجزیه مؤلفه‌های اصلی، آشکارسازی تغییر نظارت شده، آشکارسازی تغییر نظارت نشده، هیبرید، شبکه‌های عصبی مصنوعی، مدل پوشش گیاهی-سطوح نفوذناپذیر-خاک و سامانه‌های اطلاعات جغرافیایی تشریح می‌شوند. روش‌های پیش از طبقه‌بندی، نقشه‌های تغییر حاصل از داده‌های چند زمانه را بدون تولید نقشه‌های پوشش و کاربردی اراضی طبقه‌بندی شده آشکارسازی می‌کنند اما آشکارسازی تغییر پس از طبقه‌بندی ماتریس دقیقی از تغییر «از- به» را فراهم می‌نماید و معمولاً تا حد زیادی به تجزیه و تحلیل ورودی‌ها نیاز دارد. روش‌های پیشرفته بسیار متنوع بوده و معمولاً در پاسخ به مطالعات خاصی توسعه یافته‌اند. مطالعات نشان داده‌اند که تفریق تصویر، تجزیه مؤلفه‌های اصلی و مقایسه پس از طبقه‌بندی رایج‌ترین روش‌های مورد استفاده به منظور بارزسازی تغییرات می‌باشند اما در سالهای اخیر شبکه‌های عصبی مصنوعی و روش‌های حاصل از تلفیق سنجش از دور و سامانه‌های اطلاعات جغرافیایی تکنیک‌های مهمی محسوب می‌شوند.

کلیدواژه‌ها


عنوان مقاله [English]

A review of some of the methods for detecting changes Using remote sensing data

نویسندگان [English]

  • Maliheh Sadat Madanian
  • Alireza Sofianian
Master of Science (Natural Resources), Isfahan University of Technology
چکیده [English]

Change detection is the process of identifying changes in an object or phenomenon by observing it in different time intervals. Careful and timely detection of changes in land forms and reliefs provides a better basis for understanding relations and the interactions between human and natural phenomena. In this way, it makes managing and exploiting resources possible. Remote sensing data is a wonderful resource for different applications in detecting changes, due to its temporal magnification, spectral and radiometric variety, appropriate digital format and integrated view. Many methods have been developed to detect changes, all of which have advantages and disadvantages. According to the studies, these methods show different results in the same environment. Generally, change detection methods are classified into 3 different classes: pre-classification comparison, post- classification comparison, advanced methods. The present article analyzes some of these methods like image subtraction, image division, main components analysis, detection of controlled changes, and detection of uncontrolled changes, hybrid, artificial neural networks, vegetation-impermeable surfaces-soil model and geographic information systems. Pre-classification methods detect changes caused by multi-temporal data without producing classified vegetation and land-use maps. Yet, post-classification methods provide a precise matrix of changes and they usually need input analysis. There are diverse advanced methods which are usually developed in response to specific studies. Studies indicate that image subtraction, main components analysis and post-classification methods are the most popular methods used for change detection. However in recent years, artificial neural networks and combinations of remote sensing and geographic information systems are regarded as important techniques.

کلیدواژه‌ها [English]

  • Change detection
  • land use and vegetation
  • Remote Sensing

1- Byrne, G.F., Crapper, P.F., and Mayo, K.K.(1980) .Monitoring land cover changes by principal component analysis of multitemporal Landsat data». Remote Sensing. Environment., VOL. 10, PP. 175-184.

2- Civco, L. D., Hurd, J.D., Wilson, E.H., Song, M.,& Zhenkui, Z.,(2002). A comparison of land use and land cover change detection methods. «ASPRS-ACSM 22nd Conference.

3- Coppin, P., Jonckheere, I., Nackaerts, K.,Muys, B. and Lambin, E. (2004). Review article digital change detection methods in ecosystem monitoring: a review». Int. J. Remote Sens., Vol.25, No.9,PP.1565-1596

4- Hester, D.B.»Land Cover mapping and change detection in urban watersheds using Quickbird high spatial resolution satellite imagery», Ph. D. dissertation, North Carolina State University. North Carolina, 2008.

5- Hung, C.C., Coleman, T.L. and Long, O.(2004). Supervised and unsupervised neural models for multispectral image classification.» ISPRS Congress, Istanbul.

6-  Jensen, J.(2005). Introductory digital image processing: A Remote Sensing Perspective.» 3rd. ED. Pearson Prentice Hall, Pearson Education, Inc.

7- Kamusoko, C., Aniya, M. 2009. «Hybrid classification of Landsat data and GIS for land use/cover change analysis of the Bindura district, Zimbabwe.» International Journal of Remote Sensing, Vol. 30, No. 1,pp97-115.

 8- Lillesand, T., Kiefer, R.,& Chipman, R.(2004). Remote Sensing and Image Interpretation». 5th Ed. John Wiley & Sons, Inc.

9- Liu, X., and Lathrop, R.G.(2002). Urban change detection based on an artificial neural network.» Int. J. Remote Sens., VOL. 23, PP.2513-2518.

10- Liu, X.H., Skidmore, A.K. and Oosten. H.V. (2002). Integration of classification methods for improvement of land Cover map accuracy. « ISPRS J. Photogrammetry. Remote. Sens.,VOL. 56, NO.4,PP.257-268.

11- Lo, C.P. and Shipman, R.L.(1990). A GIS approach to land-use change dynamics detection.» Photogramm. Eng. Remote Sens., VOL. 56, PP.1483-1491.

12- Lu, D., Mausel, P., Brondizio, E. and Moran, e.(2004). Change detection techniques». Int.J. Remote Sens., Vol.25,No 12,PP.2365-2401.

13- Miller, L.D., Nualchawle, K. and Tom, C.(1978). Analysis of the dynamics of shifting cultivation in the tropical forests of northern Thailand using landscape modelling and classification of Landsat imagery.» Greenbelt, Maryland, U.S.A.

14- Munyati, Ch. (2004). Use of principal component analysis (PCA) of remote sensing images in wetland change detection on the Kafue flats, Zambia». Geocarto Int. Vol.19, No.3,PP.11-22.

15- Pain, W.J. «Land cover classification and change detection analysis using high-resolution IKONOS imagery for the Bayview Bog wetland, Ontario.» M.S. thesis, Queen's University, Kingstone, Ontario, Canada, 2007.

16- Richardson, A. J. and Milen, A.K. (1983). Mapping fire bums and vegetation regeneration using principal components analysis.» San Francisco, New York, PP.51-56.

17- Setiawan, H., Mathieu, R. and Thompson-Fawcett M. (2006). Assessing the applicability of the V-I-S model to map urban land use in the developing world: Case study of  Yogyakarta, Indonesia.» Comput. Environ. Urban Syst., VOL. 30, PP.503-522.

18- Siewe. S. «Change detection analysis of the land use and land cover of the Fort Cobb reservoir watershed». M.S. thesis, Oklahoma State University,2007.

19- Singh, A.(1989). Digital change detection techniques using remotely-sensed data». Int. J. Remote Sens., Vol.10, No.6, PP. 989-1003.

20- Toll, D.L., Royal, I.A. and Davis, J.B.(1980). Urban area up-date procedures using Landsat data» Niagra, Canada.

21- Tso.B. and Mather, P.M.(2009). classification methods for remotely sensed data». 2nd ED. Chapter 2-3, Taylor and Francis Group. America.

22-Weismiller, R.A., Kristof, S. J., Scholz, D.K. Anuta, P.E. and Momen, S.A.(1977). Change detection in coastal zone environments.» Photogramm. Eng. Remote Sens., VOL.43, PP.1533-1539.

23- Weng, Q.(2002). Land use change analysis in the Zhujiang Delta of China using satellite remote sensing, GIS and stochastic modeling.» J. Environ. Manage., VOL. 46,PP.273-284.

24- Wijaya, A. «Application of multi-stage classification to detect illegal logging with the use of multi- source data». M.S thesis, ITC, The Netherlands.2005.

25- Xiao, J., Shen, Y., Ge. J., Tateishi, R., Tang, Ch., Liang, Y. and Huang, zh.(2006). Evaluating urban expansion and land use change in Shijiazhuang, China, by using GIS and remote sensing.» Landscape and urbun plan., VOL. 75,PP.65-80.

26- Yang, X. and Lo, C.P.(2002). Using a time series of satellite imagery to detect land use and land cover changes in the Atlanta, Georgia metropolitan area.» Int. J.Remote Sens., VOL.23,PP.1775-1798.

27-Yuan, F., Sawaya, K,E., Loeffelholz, B.C. and Bauer, M.E. (2005). Land cover classification and change analysis of the Twin Cities (Minnesota) metropolitan area by multitemporal landsat remote sensing». Remote sens. Environ., Vol. 98. PP.317-328.

28-Zhang, Zh., Lieven, V., Eva De, C., Ou, X, and Robert De. W.(2008). Vegetation change detection using artifical neural networks with ancillary data in Xishuangbanna, Yunnan Province, China». Chin. Sci. Bull., Vol. 52 No. 2, PP. 232-243.