نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد فتوگرامتری، دانشکده مهندسی ژئوماتیک، دانشگاه صنعتی خواجه نصیرالدین طوسی

2 استادیار گروه فتوگرامتری و سنجش از دور، دانشکده مهندسی ژئوماتیک، دانشگاه صنعتی خواجه نصیرالدین طوسی

3 استادیار دانشکده اطلاعات زمین شناسی و مشاهدات زمینی، دانشگاه توونت

چکیده

در سال­‌های اخیر سنجنده جدیدی با نام لیدار موج-پیوسته وارد خانواده لیزر اسکنرهای تجاری شده است. مزیت اصلی این نوع جدید سنجنده‌­ها، ثبت کامل موج پالس بازگشتی پس از برخورد به عوارض گوناگون در مسیر سیر پالس لیزر به سطح زمین می­‌باشد. با ثبت کامل موج، خروجی ابر نقاط دارای تراکم بالاتر و قابلیت اطمینان بیشترهمراه با پارامترهای جدیدی ازجمله پهنای پالس و دامنه پالس مربوط به هر نقطه می­‌باشد. این پارامترهای جدید ما را در تحلیل و بررسی هر چه کاملتر و صحیح‌­تر خروجی ابر نقاط سه­‌بعدی این نوع سنجنده‌­ها یاری می­‌رسانند. خروجی لیدار می‌تواند در زمینه‌­های مختلفی از جمله به روز رسانی پایگاه‌­های داده‌­ی سه بعدی، استخراج عوارض، تهیه مدل سه­‌بعدی ساختمان­‌ها، تهیه مدل جنگلها، مدیریت و برنامه­‌ریزی شهری، مدیریت ترافیک، کنترل آلودگی هوا، صنعت توریسم، مدیریت بحران و بسیاری کاربردهای دیگر بکار گرفته شود. در این مقاله ابتدا به نکاتی در باب سنجنده لیدار موج-پیوسته، پردازش­‌های سیگنالی صورت گرفته بر روی آن و نحوه استخراج نقاط سه ­بعدی از آن می­‌پردازیم.  بررسی انواع مختلف این نوع سنجنده‌­ها و تاریخچه مختصری از روند تکاملی آنها بخش بعدی را شامل می‌­شود. در پایان به کاربردهای گوناگون و متنوع این داده‌­ها در حوزه­‌های جنگل، شهری و هیدروگرافی می­‌پردازیم.

کلیدواژه‌ها

عنوان مقاله [English]

Continuous waveguide system and its applications

نویسندگان [English]

  • Mohsen Hassanzade Shahraji 1
  • Ali Mohammadzadeh 2
  • Kurosh Khoshelham 3

1 Graduate student of Photogrammetry, Faculty of Geotechnical Engineering, Khaje Nasir Al-Din Toosi University of Technology

2 Assistant Professor, Department of Photogrammetry and Remote Sensing, Faculty of Geomatic Engineering, Khaje Nasir Al-Din Toosi University of Technology

3 Assisstant professor at ITC Faculty of Geo-Information Science and Earth Observation of the University of Twente

چکیده [English]

In recent years, a new sensor called Lidar Continuous Wave has been introduced into the commercial laser scanners family. The main advantage of this new type of sensors is the complete recording of the return pulse after the collision with various ground features along the path of the laser pulse to the surface of the ground. With full wave recording, the output of the cloud of points has a higher density and more reliability, along with new parameters, including pulse widths and pulse amplitudes for each point. These new parameters help us analyze and investigate outcomes of the three-dimensional cloud of points of these types of sensors ever more correct and comprehensive . Lidar's output can be applied in various fields, including updating 3D databases, extracting ground features, providing a 3D model of buildings, providing forest models, urban management and planning, traffic management, air pollution control, tourism industry, crisis management, and many other applications. In this article, we first discuss some points about the Lidar Continuous Wave sensor, the signal processing carried out on it so far, and how to extract the three-dimensional points from it. Examining different types of these sensors and a brief history of their evolutionary process forms the next section. In the end, various applications of this data in forest, urban and hydrographic fields are discussed.

کلیدواژه‌ها [English]

  • Remote Sensing
  • Continuous wave Lidar
  • 3D model
  • Topography
  • Hydrography
  • Forestry
  • Photogrammetry
1- Ackerman, F. (1999) «Airborne laser scanning-present status and future expectations.» ISPRS Journal of Photogrammetry & Remote Sensing 54: 64-67.
2-Blair, J., Hofton, M. (1999). «Modeling laser altimeter return waveform over complex vegetation using high-resolution elevation data.» Geophysical Research Letters 26(16): 2509-2512.
3-Brenner, A., Zwally, H., Bently, C., Csatho, B., Harding, D. Hofton, M. Minster, B., Roberts, L., Saba, J., Thomas, R., Yi, D. (2003). Derivation of range and range distributions from laser pulse waveform analysis for surface elevations, roughness, slope, and vegetations heights. Technical Report Geoscience Laser Altimeter System(GLAS).
4-Chauve, A., C. Mallet, et al. (2007). Processing Full-Waveform Lidar Data: Modelling Raw Signals. ISPRS Workshop on Laser Scanning Finland.    
5-Geophysic (2005). «Special issue on Results From Ice, Cloud, and land Elevation Satellite (ICESAT) Mission.» Geophysical Research Letters 57(2-3-4).
6-GLAS (2008) Website of GLAS system associated withICESAT mission.» Retrieved 31.01.08, from http://glas.gsfc.nasa.gov/.   
7-Guenther, G., A. Cunningham, et al. (2000). Meeting the accuracy challenge in airborne lidar bathymety. 20th Workshop on Lidar Remote Sensing of Land and Sea. Dresden, Germany.        
8-Guenther, G. and H. Mesick (1999). Analysis of airborne lidar bathymetric waveforms. the 9th Ocean Optics Orlando, FA, USA.  
9- Harding, D., Gesh, D., Carabajal, C., Luthcke, S. (1999) «Application of the shuttle laser altimeter in an accuracy assessment of GTOPO30, a global 1-kilometer digital elevation model « International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 32(part 3/W14: 81-85).
10- Hug, C., Ullrich, A., Grimm, A. (2004). «Litemapper-5600-A waveform-digitizing LIDARterrain and vegetation mapping system.» International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 36(Part /8W2): 24-29.     
11- ICESAT (2008). «Website of the ICESAT mission with in particular technical information and GLAS system data.» Retrieved, 24, 07, 08 from http://icesat.gsfc.nasa.gov/.
12-Jotzi, B. and U. Stilla (2006). «Range determination with waveform recording laser systems using a Wiener Filter.» ISPRS Journal of Photogrammetry & Remote Sensing: 95-107.
13- Lefsky, M., D. Harding, et al. (1999b). «Surface Lidar remote sensing of basal area and biomass in deciduous forests of eastern Maryland, USA Remote Sensing of Environment 67(1) 83-98.
14- LVIS (2008). «LVIS sensor website «. Retrieved 24.07.08, from http://lvis.gsfc.nasa.gov/.       
15- Mallet, C. and F. Bretar (2009) «Full-waveform topographic lidar: State-of-the-art.» ISPRS Journal of Photogrammetry & Remote Sensing 64: 1-16.           
16-Mallet, C., F. Bretar, et al. (2008). «Analysis of Full-Waveform Lidar Data for Classification of Urban Areas.» Photogrammetrie.Fernerkundung.Geoinformation 5: 337-349.         
17-Reitberger, J., Krzystek, P., Stilla, U. (2007). «Combining tree segmentation and stem detection using full-waveform lidar data.» International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 36(Part /3W52): 332-337.          
18-Reitberger, J., Krzystek, P., Stilla, U. (2008a). «Analysis of full waveform LIDAR data for the classification of deciduous and coniferous trees.» International Journal of Remote Sensing 29(5): 1407-1431.
19- Reitberger, J., Schnorr, C., Krzystek, P., Stilla, U. (2008b3) D segmentation of full-waveform lidar data for single tree detection using normalized cutes.» International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 37(Part 3A): 77-83.
20-SLICER (2008) Website of SLICER and SLA sensors.» Technical specifications and data available. 24.07.08, from http://denali.gsfc.nasa.gov/lapf/.
21-VCL (2008) «Website of the Vegetation Canopy Lidar mission.» Technical specifications, publications and data available Retrieved 18.07.08, from http://www.geog.umd.edu/vcl/.
22-Wagner, W., M. Hollaus, et al «3 (2008) d vegetation mapping using small-footprint full-waveform airborne laser scanners.» International Journalof Remote Sensing 29(5): 1433-1452.        
23- Wagner, W., A. Ullrich, et al. (2006) «Gaussian decomposition and calibration of a novel small-footprint full-waveform digitising airborne laser scanner.» ISPRS Journal of Photogrammetry & Remote Sensing 60(2): 100-112.