برآورد آب معادل برف در استان کرمان جهت مدیریت منابع آب با استفاده از داده های سنجش از دور مایکروویو غیر فعال به روش شبکه های عصبی مصنوعی و تکنیک های رگرسیون چندگانه

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد سنجش از دور و GIS، دانشگاه هرمزگان

2 استادیار جغرافیای سیاسی، دانشگاه امام حسین علیه السلام

3 دانشجوی دکتری تخصصی جغرافیای سیاسی، دانشگاه آزاد اسلامی، واحد علوم و تحقیقات تهران، ایران

4 دکترای ژئومورفولوژی، دانشگاه تهران

چکیده

پوشش برف معرف میزان آب ذخیرهشده است و درنتیجه آب حاصل از ذوب برف نقش مهمی را درایجاد روانابهای سطحی و آبهای زیرزمینی در حوضههای آبریز کشور ایفا میکند. آشکارسازی و تعیین ویژگیهای مختلف برف و یخ با استفاده از دادههای سنجشازدور، که در هیدرولوژی کاربرد وسیعی دارد، روش نوینی را در به دست آوردن پارامترهای مورد نیاز هیدرولوژی پدید آورده است. در این تحقیق با استفاده از دمای روشنایی واحد گمانهزن مایکروویو پیشرفته A (AMSU-A)، روی ماهوارههای NOAA، و الگوریتمهای مختلف بازیابی (رگرسیون، شبکههای عصبی مصنوعی و...) آب معادل برف در حوضههای آبریز استان کرمان در فصل زمستان طی یک دوره 10 ساله (2015-2006) محاسبه و صحتسنجی شده است. به دلیل عدم همزمانی اخذ دادههای ایستگاهی و گذر ماهواره، طی دوره مورد مطالعه، درمجموع اطلاعات دیدهبانی شده برای 104 روز از پنج ایستگاه برف سنجی که تقریباً با اطلاعات مایکروویو ماهوارهای همزمان بودهاند از منطقه تحت بررسی گردآوریشده است. براساس نتایج به دست آمده، روش شبکههای عصبی مصنوعی با مقادیر شاخصهای خطا (11/0=MSE و05/0=RMSE) و حجم آب معادل برف (459270000 مترمکعب) و پوشش برف 83/10 درصد روزانه برای 104 روز انتخابی، برآورد بهتری نسبت به روش رگرسیون چندگانه با مقادیر شاخصهای (51/7=MSE و 74/2=RMSE) و حجم آب معادل برف (530347500 مترمکعب) و الگوریتم بازیابی آب معادل برفِ سنجندهیAMSU-A با برآوردهای مقادیر شاخصهای خطا (66/90=MSE و 52/9=RMSE) و حجم آب معادل برف (338985000 مترمکعب) داشت. این نتایج همچنین نشان میدهند که مشاهدات این گمانهزن پتانسیل بالایی را برای آشکارسازی پوشش برف دارد و استفاده از اطلاعات آن برای محاسبه آب معادل برف در مناطقی نظیر استان کرمان که با محدودیت ایستگاههای زمینی برف سنجی مواجه است پیشنهاد میشود. ازآنجاییکه این منطقه قابلیت ریزش برف را در فصل زمستان دارا میباشد بنابراین اطلاعات درباره آب معادل برف در این منطقه برای بسیاری از کاربردهای هیدرولوژی، هواشناسی، اقلیمشناسی و همچنین تولید برقآبی و پیشبینی سیلاب ضروری است.

کلیدواژه‌ها


عنوان مقاله [English]

Estimation of snow equivalent water for managing water resources in Kerman Province using passive microwave remote sensing data By the method of artificial neural networksand multiple regression techniques

نویسندگان [English]

  • Yaser Amini 1
  • Abbas Alipour 2
  • Seyyed Mostafa Hashemi 3
  • Sajjad Bagheri SeyeedShokri 4
1 M.Sc. graduated of remote sensing and GIS,University of Hormozgan
2 Assistant professor of political geography, University of Imam Hossein
3 Ph.D student of political geography, Islamic Azad University, Science and Research Branch, Tehran, Iran.
4 Ph.D in Geomorphology, University of Tehran
چکیده [English]

Introduction
Snow cover represents the amount of stored water, and the water from melting snow plays an important role in the formation of surface water and groundwater in the country's watersheds.  Detection and determination of snow and ice different characteristics by using remote sensing data, which is widely used in hydrology, created new approaches in acquiring needed parameters in Hydrology.Results of the research show that the observations of the guesser have high potentials for detection of snowcover and the use of its data is suggested for calculating water of the equivalent snow in the areas such as Kerman Province which is facedwith the limitation of ground stations.
 
Materials & Methods
Since this area is able to have snow in winter, therefore the data about water equivalent to the snow in this area is necessary for many applications such as hydrology, meteorology, climatology and also producing hydroelectric and flood estimation. In this study, using brightness temperature from the Advanced Microwave Sounding Unit-A (AMSU-A), on board the NOAA satellites and the artificial neural networks as well as multiple regression techniques, the snow water equivalent forthe catchment basins of Tehran in the winter during a 10-year period (2015-2006) has been calculated and verified. In total, data from 5 monitoring stations of snow for 104 days during the study period was used for the estimation and verification.
 
Results & Discussion
Based on the results we obtained, the best estimate is related to the artificial neural networks with an RMSE=0/05, MSE=0/11, Bias= 0/0006 and r=0/14.The results indicate the superiority of the artificial neural networks over the regression method.
 
Conclusion
This results also show that, the observations of this sounding has the high potential for indicating the coverage of snow which are useful information and it is suggested to calculate snow water equivalent in the regions like Kerman where has a limited ground stations of snow measurement.
 

کلیدواژه‌ها [English]

  • Snow Water Equivalent
  • Advanced Microwave Sounding
  • Artificial neural networks
  • Kerman

بایزیدی، ا، اولادی، ب، عباسی، ن، 1391، «تحلیل داده‌های پرسشنامه‌ای به کمک نرم‌افزار SPSS (PASW)19"، انتشارات عابد.

بیرودیان، ن، 1382، برف و بهمن (مدیریت مناطق برف‌گیر)، دانشگاه امام رضا (ع). ص 23.

جاوید انباردان، ف، 82-81، سنجش و شناسایی برف روزانه با داده‌های ماهواره میکروموج SSM/I، پایان‌نامه دوره کارشناسی ارشد رشته سنجش‌ازدور و GIS، دانشکده علوم زمین دانشگاه شهید بهشتی تهران.

خواجه‌ای، ،آ، 1392، برآورد آب معادل برف با استفاده از اطلاعات مایکروویو ماهواره‌ای به روش شبکه عصبی و تکنیک‌های رگرسیون چندگانه (مطالعه موردی: حوضه‌های آبریز استان تهران). دانشگاه هرمزگان.

روشنی، ن، ولدان زوج، م ج، رضایی، ی، 1387، "برف سنجی با استفاده از داده‌های سنجش‌ازدور (مطالعه موردی ـ یخچال علم چال)"، همایش ژئوماتیک.

زارع ابیانه، حمید، 1391، "برآورد توزیع مکانی آب معادل برف و چگالی برف با استفاده از روش ANN (حوزه‌های آبخیز آذربایجان غربی)"، ژورنال مهندسی منابع آب، دوره5، شماره 15، ص 12-1.

طبری، معروفی، زارع ابیانه، امیری چایجان، شریفی؛  حسین، صفر، حمید، رضا، محمدرضا (1387). "مقایسه روش‌های ترکیبی و شبکه عصبی مصنوعی در تخمین آب معادل برف در زیرحوضة صمصامی". سومین کنفرانس مدیریت منابع آب ایران، دانشگاه تبریز، دانشکده مهندسی عمران.

قنبرپور، م.ر، م. محسنی ساوری، ب. ثقفان، ح. احمدی وک. عباسپور.1384. "تعیین مناطق مؤثر در انباشت و ماندگاری سطح پوشش برف و سهم ذوب برف در رواناب"، مجله منابع طبیعی ایران، جلد58، شماره 3.

نجفی ایگدیر، احمد، 1386، "برآورد رواناب ذوب برف با استفاده از سنجش‌ازدور و سامانه اطلاعات جغرافیایی در حوضه شهر چایی ارومیه"، پژوهش و سازندگی در منابع طبیعی، شماره 76.

10- Balk, B., & Elder, K.. (2000) "Combining binary decision tree and geostatistical methods to estimate snow distribution in a mountain watershed".Water Resources Research, 36, 13-26.

11- Dozier, j. 1989. "Spectral signature of alpine snow cover from the Landsat thematic mapper", Remote sensing environment 28: 9-22

12- Erxleben, J., K. Elder and R. Davis. , 2002."Comparison of spatial interpolation methods for estimating snow distribution in Colorado Rocky Mountains". Hydrol. Proc. 16: 3627-3649.

13- Hall, Dorothly K., Kelly, Richard EJ., Forester, James L., and Chang, Alfred Tc., 2005, "Estimation of Snow Extent and Snow Properties", Encyclopedia of Hydrological Sciences, Edited by M G Anderson.

14- Intenational hydrological programme (IHP) (2009). "The intenational classification for seasonal snow on the glound, working group on snow classification", UNESCO,paris.

15- Jollieffe, Ian T., and Stephenson, David B., 2003,” Forecast Verification A Practitioner’s Guide in Atmospheric Science".

16- Kumar, M., Raghuwanshi N.S., Singh, R., Wallender, W.W., and Pruitt, W.O., 2002, "Estimating Evapotranspiration Using Artificial Neural Network". Journal of Irrigation and Drainage Engineering, 128(4): 224-233.

17- Kongoli, Cezar., Dean, Charles A., Helfrich, Sean R., and Ferraro, Ralph R., 2006, "The Retrievals of Snow Cover Extent and Snow Water Equivalent from a Blended Passive Microwave–Interactive Multi-Sensor Snow Product", 63rd EASTERN SNOW CONFERENCE, Newark, Delaware USA.

18- Langlois, A., Scharien, R., Geldsetzer, T., Iacozza, J., Barber, D.G., and Yackel, J., 2008, "Estimation of snow water equivalent over first-year sea ice using AMSR-E and surface observations, Remote Sensing of Environment", 112, 3656-3667.

19- Mo, T., and Liu, Q., 2008, "A study of AMSU-A measurement of brightness temperatures over the ocean", journal of geophysical research, vol. 113, D17120, doi:10.1029/2008JD009784.

20- Naturalium, rerum., 2010, "Hydrological Snowmelt Modelling in Snow Covered River Basins By Means of Geographic Information System and Remote Sensing (Case Study -- Latyan Catchment in Iran)",The Dissertation for Ph. D degree.

21-Poggio, L., &Gimona, A. (2015). Sequence-based mapping approach to spatio-temporal snow patterns from MODIS time-series applied to Scotland. International Journal of Applied Earth Observation and Geoinformation, 34, 122-135.‏

22- Roebber, P.J., Bruening, S.L., Schultz, D.M. and Cortinas JR., J.V. (2002). "Improving snowfall forecasting by diagnosing snow density", Weather and Forecast, 18, 264-287.

23-Salas, J. D., Boes, C. D. and Smith, R. A.. 1982. "Estimation of ARIMA models with seasonal parameters". Water Resour. Res 18: 1006-1010.

24-Tedesco, M., Pulliainen, J., Takala, M., Hallikainen, M., &Pampaloni, p.(2004). "Artificial neural network- based techniques for the retrieval of SWE and snow depth from SSM/I data". Remote Sens. Environ. 90, 76-85.

25- Tong, Jinjun, De .25.´ry, Stephen J., Jackson, Peter L., and Derksen, Chris, 2010, "Testing snow water equivalent retrieval algorithms for passive microwave remote sensing in an alpine watershed of western Canada", Can. J. Remote Sensing, Vol. 36, Suppl. 1, pp, S74–S86.