مدلسازی روابط مکانی فشار بخار آب با استفاده از تکنیک آمار فضایی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی اقلیم شناسی دانشگاه شهیدبهشتی

2 دانشیار گروه جغرافیای طبیعی، دانشگاه شهید بهشتی

3 دانشیار گروه سنجش از دور و GIS، دانشگاه شهید بهشتی

4 دانشیار گروه جغرافیا، دانشگاه زنجان

چکیده

بررسی روابط مکانی دادههای محیطی به عنوان یکی از مهمترین اهداف آمار فضایی برای تحلیل الگوهای فضایی و درک وابستگیهای فضایی به حساب میآید. در این راستا تحلیل اکتشافی دادههای فضایی (ESDA) به خوبی توانسته است روشهایی را برای تمایز بین الگوهای فضایی تصادفی و غیرتصادفی فراهم آورد. لذا مقاله حاضر تلاش دارد تا با استفاده از ESDA به تبیین الگوهای مکانی یکی از عناصر مهم اقلیمی یعنی فشار بخار آب بپردازد. در این راستا آمارههای موران عمومی (Moran’s I) و موران محلی (Local Moran’s Anselin) و LISA به عنوان رویکردهای ESDA به منظور تحلیل خودهمبستگی فضایی الگوهای مکانی فشار بخار آب بر اساس عوامل اقلیمی مورد استفاده قرار گرفت. یافتههای آمارهی موران عمومی نشان داد که فشار بخار آب در جنوب و جنوبغرب ایران دارای ساختار فضایی بوده و به شکل خوشهای توزیع شدهاند. بررسیهای ماهانه نشان داد که فشار بخار آب در ماههای گرم سال نسبت به ماههای سرد از خودهمبستگی فضایی بالاتری برخوردار میباشد و در نتیجه تمایل بیشتری به خوشهای شدن دارد. همچنین نتایج نشان داد که با گذشت زمان فشار بخار آب در جنوب و جنوبغرب ایران تمایل بیشتری به پراکنده شدن و عدم خوشهای شدن در فضا پیدا کرده است. آماره موران دومتغیره برای فشار بخار آب و طول جغرافیایی، نشاندهنده خودهمبستگی فضایی قوی و مثبت و یک الگوی خوشهای میباشد. از طرف دیگر رابطه بین فشار بخار آب و متغیرهای عرض جغرافیایی، ارتفاع و شیب حاکی از یک توزیع فضایی پراکنده و ناهمگنی خصوصیات آنها با مقادیر فشار بخار آب است. نتایج رابطه دو متغیره فشار بخار آب و جهات جغرافیایی شیب نیز، بیانگر ناپیوستگی و تصادفی بودن رابطه بین این دو متغیر است.

کلیدواژه‌ها


عنوان مقاله [English]

Modeling of Spatial Relationships of Water Vapor Pressure using Spatial Statistics Techniques

نویسندگان [English]

  • Yunes Khosravi 1
  • Hassan Lashkari 2
  • Aliakbar Matkan 3
  • Hossein Asakareh 4
1 Ph.D candidate climatology Shahid Beheshti University
2 Associate Professor of Physical Geography, Shahid Beheshti University
3 Associate Professor of Remote Sensing and GIS, Shahid Beheshti University
4 Professor of Physical Geography, Zanjan University
چکیده [English]

Introduction
Survey of spatial relationships of environmental data is considered as one of themost important goalsof spatial statistics for analyzing the spatial patterns and understanding the spatial dependencies. In this context, the Exploratory Spatial Data Analysis (ESDA) could well provide methods for distinguishing betweenspatialrandomandnon-random patterns. Using the ESDA for analyzing the spatial autocorrelation of climatic elements is necessary to distinguish their changes and spatial distribution. The present research is aimed at explaining the use of ESDA to describethe spatial patterns ofwater vapor pressureas one of the most important climatic parameters. Water vapor pressure plays a crucial role in climate system as an important feedback variable associated with the earth’s energy balance and hydrologic cycle. This climatic parameter has an important rolein explaining the climate change or changes in climatic parameters, because: 1) It is the main sourceof rainfall in allweathersystems, 2) It suppliesthe latent heatin this process and controls the heat inthetroposphere, 3) It is the booster of the storm's speed and 4) It plays a major role in the dynamics of atmospheric circulation. So, determination and interpretation of the likely reasons of Water vapor pressure changes and its variability are vitally important for human as well as other living-beings.
 
Materials & Methods
The studied area, with about 360,200 km2 area, is located in the South and the Southwest of Iran and approximately between 25° 00'N and 34° 25'N latitudes and between 45° 38'E and 59° 17'E longitudes. Southern and southwestern parts of the studied area are located beside two massive sources of moisture, i.e. Persian Gulf and Oman Sea. The main mountain chain in the studied area is Zagros that extends from the northwest to the Southern part of the studied area. The Zagros mountainrange is responsible for the major portion of rain-producing air masses that enter the region from the Western and Northwestern sides, with relatively high amounts of rainfall. In this study, water vapor pressure data in pixels (dimension of 9×9 km) inthe time interval of 1981-2010 were collected by the Iranian Meteorological data website (http://www.weather.ir).To interpolate the water vapor pressure, Kriging Inverse Distance Weighting (IDW) and Radial Basis Functions (RBF) were tested and so after theerror validation, the optimum method (Ordinary Kriging with Gaussian method) was chosen. Considering the aim of this study, analyzing the spatial variability of WV in regional and local scale, the most important geographical features such as elevation, longitude, latitude, slope and other aspects were chosen. Topographical maps of the studied area were collected by the Geological Survey of Iran (http://www.gsi.ir). The Digital Elevation Model (DEM)with a 10 Km cell size was derived by mosaicking, geo-referencing, and editing these maps in Arc GIS 10.2 software, and the geographical features were prepared based on it. Moran's I, local Moran'sAnselin, and LISA were used asESDA’s approaches to analyze the spatial autocorrelation of water vapor pressure patterns based on climate parameters.
 
Results & Discussion
According to the cross validation, it was cleared thatthe optimum method for interpolation of water vapor pressureis Ordinary Kriging with Gaussian method. The results of Moran’s Istatistic showed that the water vapor pressure hasspatial structure and is distributed in cluster patternin the South and the Southwest of Iran. The monthly surveys showed thatthe spatial autocorrelation of water vapor pressure in warm months is higher than the cold months and therefore hasa greater tendency to cluster. The results alsoshowedthat the water vapor pressure is tending to disperse and non-clusterinspace in the South and SouthWest of Iran. The bivariate Moran's Istatistic for relation of water vapor pressure and longitude showed thestrong and positive spatial autocorrelation and also clustered pattern.
 
Conclusion
 The monthly surveys showed that the spatial autocorrelation of water vapor pressure in warm months is higher than the cold months and is more tending towards clustering. The existence of such situation in most regions of the studied area in the warm seasons reflects the consistency and homogeneity in this seasons in relation to other seasons. The main reason for these circumstances may be the lack of non-diversification of input pressure systems in these seasons, climate uniformity and sustainability and effects of local systems. Over the time, the water vapor pressure in the South and Southwest of Iran has tended to be more dispersed and less clustering in space. The reason for this incident is not fully revealed but it may be attributed to topographical effects, changes in system positioning, land use changes, etc.Investigating the relationship between spatial distribution of water vapor pressure and geographical parameters showed that the relationship betweenwater vapor pressureand latitude,elevation and slope suggested adispersed and heterogeneousspatial distribution between them. The results of the bivariaterelationship betweenwater vapor pressureand other aspects suggested a discontinuous and random relation.

کلیدواژه‌ها [English]

  • Spatial Autocorrelation
  • Moran’s I
  • Exploratory Spatial Data Analysis
  • Water Vapor Pressure
  • Geographical features
1- برتاو، حاجی‌نژاد، عسگری و گلی؛ عیسی، علی، علی و علی ، 1392، بررسی الگوهای سرقت مسکونی با به کارگیری رویکرد تحلیل اکتشافی داده‌های فضایی، مطالعه موردی: شهر زاهدان، پژوهش‌های راهبردی امنیت و نظم اجتماعی، سال دوم، شماره پیاپی 6، شماره دوم، صص 23-1.
2- رضیئی، عزیزی؛ طیب و قاسم،1387، بررسی توزیع مکانی بارندگی فصلی و سالانه در غرب ایران، پژوهش‌های جغرافیایی، شماره65، صص 108-93.
3- صادقی‌نیا، علیجانی، ضیائیان، خالدی؛ علیرضا، بهلول، پرویز، شهریار، 1392، کاربرد تکنیک‌های خودهمبستگی فضایی در تحلیل جزیره حرارتی شهر تهران، مجله تحقیقات کاربردی علوم جغرافیایی، شماره30،صص90-67.
4- عساکره، سیفی پور؛ حسین، زهره،1391، مدل‌سازی مکانی بارش سالانه‌ی ایران، مجله جغرافیا وتوسعه، شماره29، صص30 - 15.
5- علیجانی، بهلول،1373، نقش کوه های البرز در توزیع ارتفاعی بارش، فصلنامه تحقیقات جغرافیایی، شماره38، صص 120-99.
6- غیور، مسعودیان؛ حسنعلی و سید ابوالفضل، 1375، بررسی مکانی رابطه بارندگی با ارتفاع در ایران زمین، فصلنامه تحقیقات جغرافیایی، شماره 41، صص 106-88.
7- مرادی، حمیدرضا، 1383، نقش دریای خزر در شرایط بارشی سواحل شمال کشور، مجله علوم دریایی ایران، دوره 2، شماره 2 و3، صص 87-77.
8- Alijani, B., (2008). Effect of Zagros mountain on the spatial distribution of precipitation, Journal of Mountain sciences, 5.
9- Allen, R. P., and B. J. Sodden., (2008). Atmospheric warming and the amplification of precipitation extremes. Science, 321, 1481-1484.
10- Anselin, L.. (1992) Spatial data analysis with GIS: an introduction to application in the social sciences, National Center for Geographic Information and Analysis University of California, Santa Barbara, CA 93106, Technical Report,10-92.
11-Anselin, L., Sridharan, S., & Gholston, S., (2007). Using exploratory spatial data analysis to leverage social indicator databases: the discovery of interesting patterns. Social Indicators Research, 82(2), 287-309.
12-  Burns, J. I., (1953). Small scale topographic effects on precipitation distribution in San Dimas Experimental Forest. Eos, Transactions American Geophysical Union, 34(5). 761-768.
13-  Clark, w.a.v and Hosking, p.l., (1986). Statistical Methods for geographers, John Wiley and sons, New York: 379.
14- Cliff, A. D., & Ord, J. K., (1981). Spatial processes: models & applications, No 44, London.
15- Glazirin G. E (1997). Precipitation distribution with altitude,Theoretical and applied Climatology, 58.
16- Guan, H., Wilson, J. L., & Makhnin, O., (2005). Geostatistical mapping of mountain precipitation incorporating autosearched effects of terrain and climatic characteristics. Journal of Hydrometeorology, 6(6), 1018-1031.
17- Goodchild, M.F., (1986). Spatial Autocorrelation, CATMOG 47; Norwich, UK, PP. 6-25.
18- Hutchinson, M. F.,(1998). Interpolation of rainfall data with thin plate smoothing splines. Part II: Analysis of topographic dependence. Journal of Geographic Information and Decision Analysis, 2(2), 152-167.
19- Ranhao, S., Baiping, Z., & Jing, T.. (2008) A multivariate regression model for predicting precipitation in the Daqing Mountains. Mountain Research and Development, 28(3), 318-325.
20- Singh, P., & Kumar, N., (1997). Effect of orography on precipitation in the western Himalayan region. Journal of Hydrology, 199(1), 183-206.
21- Serrano. A, Mateos. V.L and Garcia. J.A., (1999), Trends analysis of monthly precipitation over the Iberian Peninsula for the period1921-1995, phys. Chem. Earth (B), 24: 84-90.
22- Streutker. DR., (2002). A remote sensing study of the urban heat island of Houston, Texas. Int J Remote Sens 23:2595-2608.
23- Tran. H, Daisuke. U, Shiro. O, Yoshifumi. Y., (2006). Assessment with satellite data of the urban heat island effects in Asian megacities. International Journal of Applied Earth Observation,8:34-48.
24- Trenberth, KE, Stepaniak., DP(2003) b). Seamless poleward atmospheric energy transports and implications for the Hadley circulation. J Climate 16:3705-3721.
25- Wentz, F., L. Ricciardulli, K. Hilburn, and C. Mears., (2007). How much more rain will global warming bring? Science Express, 317, 233-235.
26-Yamada, I., & Thill, J. C., (2007). Local indicators of network constrained clusters in spatial point patterns. Geographical Analysis, 39(3), 268-292.
27-Zhang. J, Wang. Y, Wang. Z., (2007). Change analysis of land surface temperature based on robust statistics in the estuarine area of Pearl River (China) from 1990 to 2000 by Landsat TM/ETM+ Data. International Journal of Remote Sensing, 28:2383-2390.