بهبود آشکارسازی تغییرات شئ گرا در تصاویر با قدرت تفکیک مکانی بالا بر مبنای روش جنگل تصادفی در فضای ویژگی های بهینه

نوع مقاله: مقاله پژوهشی

نویسندگان

1 کارشناس ارشد فتوگرامتری- دانشکده مهندسی نقشه برداری- دانشگاه صنعتی خواجه نصیرالدین طوسی

2 عضو هیات علمی دانشگاه جامع امام حسین (ع)- گروه CCD

چکیده

آشکارسازی تغییرات با رویکرد شیءگرا در تصاویر با قدرت تفکیک مکانی بالا به این دلیل که علاوه بر ویژگی های طیفی از ویژگی های مکانی، هندسی و بافتی استفاده می کند در مقایسه با رویکرد پیکسل مبنا  نتایج بسیار خوبی به همراه داشته است. با این وجود، انتخاب الگوریتم و ویژگی های بهینه همچنان به عنوان چالشی اساسی باقی مانده است. در این تحقیق، جهت بهبود آشکارسازی تغییرات با رویکرد شیءگرا از الگوریتم جنگل تصادفی (RF) در فضای ویژگی های بهینه استفاده شده است. در این راستا، نخست ویژگی های بافت بر روی تصاویر مربوط به دو زمان متفاوت استخراج می شود و از PCA جهت انتخاب ویژگی های بافتی مناسب استفاده می گردد. سپس، قطعه بندی چند مقیاسه در فضای ترکیب یافته از باندهای طیفی و ویژگی های بافتی مناسب در چهار سطح مختلف با استفاده از نرم افزار Ecognition انجام شده و بهترین سطح قطعه بندی تعیین می شود. در ادامه، ویژگی های بافتی، مکانی و هندسی از روی تصویر قطعه بندی شده در بهترین سطح استخراج می گردد و بر اساس محاسبه ی فاصله اقلیدسی مربوط به نمونه های آموزشی در کلاس های مختلف، ویژگی های بهینه شناسایی می شوند. کارایی الگوریتم RF شیءگرا در مقایسه با روش های متداول SVMو KNN بر اساس معیار کاپا و صحت کلی و مدت زمان محاسبات مورد بررسی قرار گرفته است. در این تحقیق، از تصاویر ماهوارهای GeoEye-1 و Quick Bird-1مربوط به سال های 2002 و 2015 جهت آشکارسازی تغییرات در جزیره قشم استفاده شده است. بر اساس نتایج تجربی، برای الگوریتم های RF شیءگرا، SVM و KNN صحت کلی به ترتیب 57/86، 76/83 و 75 درصدو ضریب کاپا به ترتیب97/0,  75/0 و 63/0 به دست آمد. همچنین، RF به دلیل استفاده از آستانه گذاری بر روی باندهای مختلف و تولید طبقه بندی کننده های درختی با تنوع بالا و وزن دهی مناسب، نسبت به هر یک از نتایج طبقه بندی کننده ها توانست بالاترین دقت را تولید کند.

کلیدواژه‌ها


عنوان مقاله [English]

Improving the Detection of Object-Oriented Changes in High-Resolution Images based on Random Forest Method in Optimal Features Space

نویسندگان [English]

  • Saeed Ojaghi 1
  • safa khazai 2
1 Master degree in photogrammetry, Kn.Toosi University
2 Assistant professor of Imam Hossein University
چکیده [English]

Extended Abstract
Land use/cover (LULC) change detection is one of the most important applications in the remote sensing field, providing insights that inform management, policy, and science. In the recent decade, development of remote sensing systems and accessibility to high spatial resolution images has associated with the improvement of digital image processing. The advantage of high spatial resolution remote sensing imagery further supports opportunities to apply change detection with object-based image analysis, i.e. object-based change detection – OBCD.
OBCD analysis in comparison with pixel-based techniques provides a more effective way, especially in high spatial resolution imagery to incorporate spatial, spectral, textural and geometry feature that can identify the LULC change in comparison with pixel-based technique. OBCD approach is classified into for categories: (i) image-object, (ii) class-object, (iii) multi- temporal object, and (iv) hybrid change detection. Different algorithms and features can be employed in the process of image classification for OBCD. Therefore, the choice of algorithm and optimization features are major challenges in OBCD. This paper has introduced an object- based change detection method based on the machine learning algorithm, which can overcome the traditional change detection method limitation and find the interested changed objects. In this paper, multi-temporal object approach is utilized and high spatial resolution imagery, GeoEye-1 and Quick Bird-1 satellite images were acquired during 2002 and 2015, covering a region of the Geshm Island which were used to detect the meaningful detailed change in the study area. As an essential preprocessing for change detection, multi-temporal image registration with the accuracy of less than one second of a pixel is applied. Also, radiometric correction is performed using histogram matching algorithm in ENVI Software. In the Next step, a number of texture features of images such as mean, variance, entropy, homogeneity, momentum and such are extracted from two images. To reduce the input features space, PCA algorithm is employed and the result of this process is used in the segmentation process. The two images are incorporated with PCA output and are used as inputs feature to segmentation. Segmentation is the first step in OBCD. It divides the image into larger numbers of small image objects by grouping pixels. The segmentation algorithm is a region-merging technique. It begins by considering each pixel as a separate object. Subsequently, adjacent pairs of image objects are merged to form bigger segments. The merging decision is based on local homogeneity criterion, describing the similarity between adjacent image objects. Correct image segmentation is a prerequisite to successful image classification. At the same time, this task requires explicit knowledge representation. Furthermore, optimal segmentation results are depended on not only the choice of segmentation algorithm or procedure, but are also often influenced by the choice of user-defined parameter combinations which are required inputs for many segmentation programs. The segmentation has been done using multi resolution segmentation algorithm which involves knowledge-free extraction of image objects. Multi-resolution segmentation begins with single pixel objects and employs a region-growing algorithm to merge pixels into larger objects; pixels are merged based on whether they meet user-defined homogeneity criteria. Each multi-resolution segmentation task must be parameterized by the user and involves settings of three parameters: Scale, Color-versus-Shape, and Compactness-versus-Smoothness. In this paper the process of segmentation is performed in four different levels using Ecognition software and finally, the level with better output with scale of 100 is selected to provide the change map. The scale values were determined through an iterative method. The color/shape was set to 0.6/0.4 and compactness/sharpness was set to 0.5/0.5 for the selected level. Color and shape weightage are inter-connected to each other. If color has a high value, which means it has a high influence on segmentation; Shape must have a low value with less influence. If both parameters are equal, then each will have roughly equal amount of influence on segmentation outcome. In addition, texture, spatial and geometrical features from the segmented image are extracted. Feature space Optimization (FSO) tool available in Ecognition software have been used to calculate optimum feature combination based on class samples in four classes including: ”barren to road”, ”barren to building”, barren to vegetation” and “barren with no change. It evaluates the Euclidean distance in feature space between the samples of all classes and selects a feature combination resulting in best class separation distance. In this study, the performance of the proposed RF-based OBCD method is compared with the conventional methods such as support vector machine (SVM) and KNN. The commonly used accuracy assessment elements include overall accuracy, producer’s accuracy, user’s accuracy and the Kappa coefficient. The overall accuracy of the change map produced by the RF method was 86.57%, with Kappa statistic of 0.79, whereas the overall accuracy and Kappa coefficient of that by the SVM and NN methods were 83.76%, 0.75 and 75%, 0.63, respectively. Experimental results show that overall accuracy and kappa coefficient obtained from the proposed RF-based OBCD method improve 3% and 18%, 2% and 10% respectively compared with SVM and KNN improved. The results indicated that object base change detection method can be performed more accurately and reliably in the high-density region if it uses image with high spatial resolution. Also, selection of classification algorithm has very impressive effect on the providing change map.

کلیدواژه‌ها [English]

  • Object Based Change Detection
  • Random Forest
  • Optimized Feature Space
  • PCA

1- Baatz M, and Schäpe A. 2000. Multiresolution segmentation: an optimization approach for high quality multi scale image segmentation. Herbert Wichmann Verlag: Berlin, Germany. p 12-23.

2- Breiman L. 2001. Random forests. Machine learning 45(1):5-32.

3- Canty MJ. 2014. Image analysis, classification and change detection in remote sensing: with algorithms for ENVI/IDL and Python: CRC Press.

4- Chen G, Hay GJ, Carvalho LM, and Wulder MA. 2012. Object-based change detection. International Journal of Remote Sensing 33(14):4434-4457.

5- Definiens A. 2009. Definiens eCognition developer 8 user guide. Definens AG, Munchen, Germany.

6- Gorte B. 1998. Probabilistic segmentation of remotely sensed images: International Institute for Aerospace Survey and Earth Sciences (ITC).

7- Hajahmadi S, Mokhtarzadeh M, Mohammadzadeh A, and javad Valadanzouj M. 2013. Uncertain Training Data Edition for Automatic Object-Based Change Map Extraction. ISPRS-International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences 1(3):185-189.

8- Hussain E, Ural S, Kim K, Fu C-S, and Shan J. 2011. Building extraction and rubble mapping for city port-au-prince post-2010 earthquake with GeoEye-1 imagery and lidar data. Photogrammetric Engineering & Remote Sensing 77(10):1011-1023.

9- Meng X, Currit N, Wang L, and Yang X. 2012. Detect residential buildings from Lidar and aerial photographs through object-oriented land-use classification. Photogrammetric Engineering & Remote Sensing 78(1):35-44.

10- Modi M, Kumar R, Shankar GR, and Martha TR. 2014. Land Cover Change Detection Using Object-Based Classification Technique: A Case Study Along The Kosi River, Bihar. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 40(8):839.

11- Nikfal M. 2012. Change Detection of building  using high resoulation satellite images based on map  and object oriented analysis Tehran: Tehran.

12- Sadeghi V, Ebadi H, and Ahmadi FF. 2013. A new model for automatic normalization of multitemporal satellite images using Artificial Neural Network and mathematical methods. Applied Mathematical Modelling 37(9):6437-6445.

13- Wong T, Mansor S, Mispan M, Ahmad N, and Sulaiman W. 2003. Feature extraction based on object oriented analysis. Proceedings of ATC 2003 Conference.

14- Zhou W, and Troy A. 2008. An object oriented approach for analysing and characterizing urban landscape at the parcel level. International Journal of Remote Sensing 29(11):3119-3135.

15- Zhou Z-H. 2012. Ensemble methods: foundations and algorithms: CRC Press.