تحلیل فضایی و بهینه سازی شبکه ی ایستگاه های باران سنجی استان کردستان با استفاده از واریانس خطای کریجینگ

نوع مقاله: مقاله پژوهشی

نویسندگان

1 کارشناس ارشد سنجش از دور دانشگاه تبریز

2 استاد گروه ژئومورفولوژی دانشگاه تبریز

3 کارشناس ارشد آمایش سرزمین-محیط زیست دانشگاه پیام نور تهران شرق

10.22131/sepehr.2018.31479

چکیده

در راستای برداشت دقیق دادههای بارش به عنوان مهمترین ورودی مدلسازیهای هیدرولوژیکی، شبکهی بارانسنجی نقش اساسی را ایفا میکند. با طراحی شبکهی بارانسنجی بهینه میتوان با حداقل هزینه و عدم اطمینان دادههای بارش را برداشت نمود. به منظور بهینهیابی ایستگاههای بارانسنجی روشهای متفاوتی ارایه شده که در این میان روشهای زمین آمار به گستردگی مورد استفاده قرار میگیرند. تحقیق حاضر وضعیت ایستگاه­های بارانسنجی استان کردستان و پتانسیل بهینهسازی موقعیت آنها را با استفاده از روشهای زمین آمار بر مبنای واریانس خطای کریجینگ و با در نظر گرفتن توپوگرافی منطقه بررسی نموده است. در این تحقیق به منظور تحلیل فضایی و برآورد واریانس خطا از دادههای بارش 145 ایستگاه هواشناسی در بازهی زمانی (2013-2001) و نقشه­ی رقومی ارتفاع ماهوارهی SRTM  استفاده گردیده و با توجه به وسعت زیاد منطقهی مورد مطالعه و تغییرات زیاد داده­های بارش، ناحیهبندی منطقه یا خوشهبندی ایستگاه­ها صورت گرفته است. نتایج پژوهش نشان می­دهد که ارتفاعات بیشترین سهم را در ایجاد خطای برآورد بارش داشته و با حذف ایستگاههایی که در موقعیت مناسبی واقع نشدهاند میتوان هزینهی نگهداری ایستگاهها را کاهش داد؛ همچنین با حذف یا جابجایی 8 ایستگاه از ایستگاههای موجود و اضافه نمودن 28 ایستگاه جدید به شبکهی بارانسنجی، مقادیر میانگین واریانس خطا 11% کاهش مییابد که بیشترین کاهش در بخش­های مرکزی استان با 24.03% میباشد. نتایج پژوهش حاضر به منظور کاربرد روشهای زمین آمار در تحلیل فضایی و بهینهسازی ایستگاههای بارانسنجی در نواحی کوهستانی از اهمیت بالایی برخوردار بوده و نقشههای تولید شده نیز برای سازمانهای اجرایی (نظیر سازمان هواشناسی، وزارت نیرو و ...) از ارزش کاربردی بالایی برخوردار هستند.

کلیدواژه‌ها


عنوان مقاله [English]

The spatial analysis and optimization of rain gauging station network in Kurdistan Province using the Kriging Error Variance

نویسندگان [English]

  • arash zandkarimi 1
  • Davood Mokhtari 2
  • Shaida Zandkarimi 3
1 M.A. Remote Sensing, University of Tabriz
2 Professor, Department of Geomorphology, University of Tabriz
3 M.A. Land use – Environmenta, University of Payam Noor Tehran East
چکیده [English]

Extended Abstract
Introduction
The prediction of the occurrence of floods and the reduction of damages caused by it is strongly influenced by the modeling of physical phenomena and the spatial-temporal distribution of precipitation. The purpose of the research was to optimize the rainfall gauging network in Kurdistan province using Kriging estimation variance and taking into account the topography of the area. In this study, to optimize the rain gauging network in Kurdistan province, rainfall data of the rain gauging, synoptic, and climatology stations were used. In order to reduce the costs, stations close to each other that are located in the same height range and also have the same error variance, were removed from the existing network. In order to reduce the maintenance cost of the stations, after clustering of the area, 8 stations whose removal had little impact on the accuracy of the data, were identified in the province. Then. In order to strengthen the network, the optimization of new stations was put on the agenda and 28 points were set as the proposed stations.
 
Materials and methods
After reviewing the existing stations’ data, 145 stations were selected for the analysis and optimization of the existing network. After selecting the normal data and spatializing them, due to the large extent of the area and the variability of the average annual precipitation, Kurdistan province is divided into smaller regions with less variations in the average rainfall. The regional division or clustering of stations is carried out using the functions available in the ArcGIS 10.2.2 software and based on the main catchment basins. In the next step, the spatial distribution of rainfall and the variance of the errors in all clusters are calculated separately. Given the importance of highlands in receiving rainfall and supplying water, the distribution of rain gauges on elevation layers has been studied. At this stage, redundant stations were eliminated, and stations which are located in close proximity of each other, and are located in the same elevation range and also have the same error variance, can be eliminated too. At the final stage, adding new stations and strengthening the network took place. At this stage, the priority is to build the station for areas where the variance of the errors is high. After adding each station, the error variance of the whole system is calculated again. Adding a new station to the network will continue as long as the network error reaches its minimum.
 
Discussion
1-Normality test of data
After spatializing the rainfall data, their normal distribution was investigated using the Kolmogorov – Smirnov test. The results show that the distribution of data at 95% level does not have a significant difference with a normal distribution.
 
2- Division of the region and clustering of stations
In this study, using the region’s digital elevation map, and based on the analyses made in the software ArcGIS 10.2.2, clustering of stations and division of the region was carried out. The entire area of interest is divided into 8 clusters.
 
3- Calculating the Kriging error of the existing network
The amounts of the rainfall data error can be obtained by calculating the Kriging error of the existing network. As mentioned in the previous sections, the calculation of the error in the Kriging method is a function of semi-variogram (spatial structure) of the variable and this feature increases the estimation accuracy of the variable error.
 
4- Distribution of the stations on elevation layers and determination of the redundant stations
By studying the distribution of the stations on altitudes, stations which had no impact on the accuracy of data extraction were removed. The candidate stations for removal were located in a same range of elevation, and showed similar error values. In order to be sure of the decision taken, by eliminating each station, the overall error of the network in each cluster is calculated, and an increase in the error values represents the wrong station is being removed.
 
5- Adding the proposed stations and calculating the variance of the new network error
Adding new stations to the network is done based on the Kriging variance. The priority of the station construction is for areas that display a high error. In the Kriging error variance method, adding a new station to the network is done based on Eó2 (error variance), in a way that points with equal error variance or greater than the value of data variance is considered as the first priority for the construction of the station. The points whose error variances are between the variance of data and ½ of the variance of data, is the second priority and finally, the third priority belongs to the points whose variances are between ½ and ¼ of the variance. In this research, based on Kriging variance, 28 stations have been proposed to strengthen the rain gauging network in Kurdistan Province.
 
Conclusion
Given that precipitation is considered as the main entrance to the planning of sustainable water resources development, in this study, the optimization of rain gauging station network in Kurdistan province was investigated using the Kriging error variance. In previous studies, generally, entropy has been considered as the main model for network modification, therefore, due to the limitations of these methods in not using the semi-variogram features, in this research, the geo-statistic method based on kriging error variance was used due to its high accuracy. The amount accuracy increase in this method depends to a large extent on the semi-variogram features (spatial structure) of the precipitation, which can be used to calculate the error variance rate for the new station before the construction and inventory of the station. In order to strengthen the network, the optimization of new stations was put on the agenda and 28 points were set as the location of the proposed stations. For practical comparison of the results, the error variance values were calculated before and after the addition of the proposed stations, the average error variance of the annual precipitation in the province decreased by 11%, with the largest decrease belonging to the central part of the province with 24.03%.

کلیدواژه‌ها [English]

  • Optimization
  • geo-statistics
  • Error variance
  • Rain gauging network
  • Kurdistan Province

1- اعمی ازغدی، مکرم، آبشیرینی، شایسته زراعتی؛ علی، مرضیه، احسان، حسین (1389). مکانیابی و بهینه‌­سازی ایستگاه‌­های باران­‌سنجی (مطالعه موردی شمال شرق خوزستان)، همایش ملی ژئوماتیک.

2- جلالی، طهرانی، برومند، سنجری؛ قباد، محمدمهدی، ناصر، صالح (1392). مقایسه روش‌­های زمین­ آمار در تهیه نقشه پراکنش مکانی برخی عناصر غذایی در شرق استان مازندران. پژوهش­‌های خاک (علوم خاک و آب). شماره 27، صفحات196- 204.

3- رحیمی بندرآبادی، ثقفیان؛ سیما، بهرام (1389). بهینه‌­سازی شبکه ایستگاه­‌های باران‌­سنجی بر مبنای بارش ماهانه و سالانه. علوم و مهندسی آبخیزداری ایران. سال چهارم، شماره 12، صفحات 27-36.

4- شفیعی، قهرمان، ثقفیان؛ مجتبی، بیژن، بهرام (1392). ارزیابی و بهینه‌­یابی شبکه­ ایستگاه­‌های باران­‌سنجی بر مبنای روش کریجینگ احتمالی (مطالعه موردی: حوضه گرگان­رود). تحقیقات منابع آب ایران. سال 9، شماره 2، صفحات 9- 18.

5- فرجی سبکبار، عزیزی؛ حسنعلی، قاسم (1385). ارزیابی میزان دقت روش‌­های درون­یابی فضایی مطالعه موردی: الگوسازی بارندگی حوضه کارده مشهد. پژوهش­­های جغرافیایی، شماره 58، صفحات 1- 15.

6- کریمی حسینی، بزرگ حداد، هورفر، ابراهیمی؛ آزاده، امید، عبدالحسین، کیومرث (1389). مکان­یابی ایستگاه‌­های باران­سنجی با استفاده از آنتروپی. علوم و مهندسی آبخیزداری ایران. شماره 11. صفحات 1-11.

7- کسایی ­رودسری، قهرمان، شریفی؛ بابک، بیژن، محمد باقر (1389). بررسی تراکم شبکه‌­ی ایستگاه­‌های باران­‌سنجی با استفاده از روش‌­های زمین آماری، مطالعه­‌ی موردی: استان­‌های خراسان رضوی، شمالی و جنوبی. علوم و مهندسی آبخیزداری ایران. شماره 10، صفحات 35-44.

8- گل‌محمدی، معروفی، محمدی؛ گلمر، صفر، کورش (1386). منطقه­‌ای نمودن ضریب رواناب در استان همدان با استفاده از روش‌های زمین آماری و GIS. علوم و فنون کشاورزی و منابع طبیعی. شماره 46، صفحات 501- 514.

9- مهرشاهی، خسروی؛ داریوش، یونس (1387). ارزیابی روش‌­های میانیابی کریجینگ و رگرسیون خطی بر پایه­‌ی مدل ارتفاعی رقومی جهت تعیین توزیع مکانی بارش سالانه، مطالعه­‌ی موردی استان اصفهان. برنامه‌­ریزی و آمایش فضا. شماره 4. صفحات233- 249.

10- میرموسوی، مزیدی، خسروی؛ سیدحسین، احمد، یونس (1388). تعیین بهترین روش زمین­ آمار جهت تخمین توزیع بارندگی با استفاده از GIS، مطالعه موردی: استان اصفهان. فضای جغرافیایی، سال 10، شماره 30، صفحات. 105- 120.

11- نادی، جامعی، بذرافشان، جنت رستمی؛ مهدی، مژده، جواد، سمیه (1391). ارزیابی روش‌­های مختلف درون­یابی داده­‌های بارندگی ماهانه و سالانه. پژوهش­‌های جغرافیایی طبیعی، شماره 4. صفحات 117- 130.

12- نظیف، محمودی میمند، فرجی سبکبار؛ سارا، هادی، حسنعلی (1392). مقایسه مکان­یابی ­ایستگاه‌­های باران­‌سنجی در حوضه کرخه با استفاده از معیار آنتروپی و واریانس خطا در محیط GIS. هفتمین کنگره‌­ی مهندسی عمران، زاهدان. صفحات1-10.

13- نورزاده حداد، مهدیان، جعفر ملکوتی؛ مهدی، محمدحسین، محمد (1392). مقایسه کارایی برخی روش‌­های زمین ­آماری به منظور بررسی پراکنش مکانی عناصر ریزمغذی در اراضی کشاورزی، مطالعه موردی: استان همدان. دانش آب و خاک. شماره 1،  صفحات 71-81.

14- Adhikary, S. K., Yilmaz, A. Gokhan, and M. Nitin,(2014).“Optimal design of rain gauge network in the Middle Yarra River catchment,Australia”.HydrologicalProcesses. Volume 29, Issue 11, pp: 2582–2599.

15- Ali. A., Lebel, T, and Amani, A., (2005). “Rainfall estimation in the Sahel”. Part  I:error function. Applied Meteorology. Volume 44, pp: 1691–1706.

16- Arnaud, P., J, Lavabre., C, Fouchier, S. Diss, and P. Javelle (2011). ”Sensitivity of hydrological models to uncertainty in rainfall input”. Hydrolog. Sci. Volume 56, pp: 397-410.

17- Awadallah, A. G., (2012). “Selecting Optimum Locations of Rainfall Stations Using Kriging and Entropy”. International Journal of Civil & Environmental Engineering. Volume 12, pp:36-41.

18- Bakhtiari. B., M. Nekooamal Kermani M.H., Bordbar (2013). “Rain Gauge Station Network Design for Hormozgan Province in Iran”. Online        at http://jdesert.ut.ac.ir, pp: 45-52.

19- Basalirwa, C.P.K., Ogallo, L.J, and  Mutua, F.M (1993)“The design of regional minimum rain gauge network”.International Journal of Water Resources Development, Volume 9, pp: 411– 424.

20- Cheng, K.S., Lin, Y.C, and Liou, J.J (2008).“Rain-gauge network evaluation and augmentation using geostatistics”. Hydrological Processes. Volume 22, pp:2554–2564.

21- Chen, Y.C., Wei, C, and Yeh, H.C (2008). “Rainfall network design using kriging and entropy”. Hydrological Processes. Volume 22, pp:340–346.

22- Goovaerts, P (2000)”Geostatistical approaches for incorporating elevation into the spatial interpolation of rainfall”. Journal of Hydrology, Volume 228, pp:113–129.

23- Jung., Y., Kim, H., Baik, J., and Choi, Minha (2014). “Rain-Gauge Network Evaluations Using Spatiotemporal Correlation Structure for Semi-Mountainous Regions”. Terr. Atmos. Ocean. Sci., Volume 25, pp: 267-278.

24-Kassim, A.H.M., Kottegoda, N.T (1991). ”Rainfall network design through comparative kriging methods”.Hydrological Sciences Journal. Volume 36, pp: 223–240.

25- Loof, R., Hjorth, P, and Raut, O.B (1994). “Rainfall network design using the              kriging technique: a case study of Karnali river basin, Nepal”. International Journal of Water Resources Development.Volume10: pp:497–513.

26- Mishra AK, Coulibaly P (2009). “Developments in hydrometric network design: a review”. Reviews of Geophysics, Volume 19. pp:1-24.

27- Papamichail DM, Metaxa IG (1996). “Geostatistical analysis of spatial variability of rainfall and optimal design of rain gauge network”. Water Resources Management. Volume 10, pp:107–127.

28- Pardo-Igúzquiza E (1998). “Optimal selection of number and location of        rainfall gauges for areal rainfall estimation using geostatistics and simulated annealing”. Journal of Hydrology. Volume 210, pp: 206–220.

29- Shaghaghian MR, Abedini MJ.“Rain gauge network design using coupled geostatistical and multivariate techniques”. Scientia Iranica 20,pp: 259–269.

30- Sun, B and Petreson, T.C (2006). “Estimating precipitation normal for USCRN stations”. Geophysical Research. Volume 111, pp.1984–2012.

31- Tsintikidis D, Georgakakos KP, Sperfslage JA, Smith DE, Carpenter TM (2002). “Precipitation uncertainty and rain gauge network design within Folsom Lake watershed”. Journal of Hydrologic Engineering, Volume 7:pp: 175–184.

32- Westcott, N.E (2009) “Continued operation of a 25-rain gage network for      collection, Reduction, and analysis of precipitation data for Lake Michigan Diversion accounting: water year 2008”. University of Illinois at Urbana-Champaign. Report No 4. pp:1-75.

33- Webster R, Oliver MA (2007). “Geostatistics for Environmental Scientists (2nd Ed)”. John Wiley & Sons: Chichester, United Kingdom.

34- Wei, Ch; Yeh, H.Ch (2014). “Spatiotempo- -ral Scaling Effect on Rainfall Network Design Using Entropy”. Entropy ,16,. pp 4626-4647.

35- WMO (1994). Guide to Hydrological Practices, 5th Ed., pp: 168-735.

36- Yeh, H.C; Chen, Y.C; Wei C, Chen RH (2011). “Entropy and kriging              approach to rainfall network design”. Paddy and Water Environment.Volume 9, pp: 343–355,

37- Younger, P. M., J. E. Freer, and K. J. Beven (2009). “Detecting the effects    of spatial variability of rainfall on hydrological modelling within an            uncertainty analysis framework”. Hydrol Process., Volume 23,                pp:1988-2003.

38- Zho. P, L.W. Zhang, K.M. Liew (2014). “Geometrically nonlinear thermomechanical analysis of moderately thick functionally graded plates using a local Petrov-Galerkin approach with moving Kriging interpolation”.CompositeStructures, Volume 107, pp. 298–314.