روندیابی شاخص نرمال شده سلامت زیست محیطی مبتنی برداده های ماهواره ای از سال 2001 تا 2013 و ارتباط آن با کانون های گردوغبارغرب آسیا

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری سنجش ازدور دانشگاه تهران

2 استادیارگروه سنجش ازدور و GIS،دانشگاه تهران

3 استادیار گروه سنجش از دور و GIS دانشکده جغرافیا دانشگاه تهران

4 استاد گروه سنجش از دور و GIS،دانشگاه شهید چمران اهواز

10.22131/sepehr.2018.32334

چکیده

سنجش از دور عرصهی نوینی را در پایش و مدلسازی متغیرها و پارامترهای محیطی، در سطوحی متفاوت گشوده است به طوری که میتواند به عنوان یک زمینه تحقیقاتی و عملیاتی مناسب برای پیشبینی و مقابله با اثرات مخرب بحرانهای زیست محیطی، قلمداد گردد. در این میان، قابلیتهای سنجندهیMODIS به لحاظ ارائه محصولات متنوع جهت تخمین پارامترهای محیطی، بیشتر از هر ابزار دورکاوی دیگر، نمود یافته است. در تحقیق حاضر از محصولات سنجنده MODIS برای معرفی شاخص نرمال شده سلامت زیست محیطی، NHEI، همراه با روندیابی تغییرات زمانی و بررسی ارتباط آن با کانونهای گردوغبار غرب آسیا در دههی اخیر، استفاده شده است. این شاخص، به صورت توأمان رفتارهای دمای سطحی و پوشش گیاهی را مدلسازی می کند. به علت همبستگی بالای نتایج حاصل از شاخص توسعه داده شده با کانونهای گردوغبار، از آن میتوان به عنوان مبنایی برای مدلسازی و روندیابی رفتار کانونهای گرد و غبار بهره برد. NHEI  برای سالهای 2002 تا 2013 توسعه یافت، سپس روند تغییرات آن به کمک فرآیند روندیابی خطی آشکارسازی شد و ارتباط آن با کانونهای گردوغبار ارزیابی گردید. از آنجایی که NHEI  روند تغییرات عناصرکلیدی دما، پوشش گیاهی و رطوبت را به صورت توأم نشان میدهد، نتایج روندیابی سلامت زیست محیطی حکایت از کاهش کلی شدت و گستره آن در محدودهی مورد مطالعه دارد. در حالی که توزیع نواحی بحرانی به سوی پراکندگی بیشتر میل نموده است. این مطالعه بر قابلیتهای NHEI در پایش و مدلسازی متغیرهای محیطی در ارتباط با طوفانهای گردوغبار، تأکید میورزد به طوری که متوسط NHEI کانونهای گردوغبار به طور معنیداری کمتر از متوسط NHEI محدوده مطالعاتی  بود، بنابراین نتایج این مطالعه میتواند افق جدیدی در حوزهی برآورد پارامترهای محیطی به کمک طراحی شاخصهای سنجش از دوری نوین را بگشاید.
 

کلیدواژه‌ها


عنوان مقاله [English]

The trending of normalized health environmental index based on satellite data from 2001 to 2013 and its relation with dust sources in the West Asia

نویسندگان [English]

  • Mohsen Bakhtiari 1
  • Ali Darvishi Bolorani 2
  • Ataollah Abdollahi Kakroodi 3
  • Kazem Rangzan 4
1 Ph.D. student in remote sensingand GIS, University of Tehran
2 Assistant professor of department of remote sensing and GIS, University of Tehran
3 Assistant professor of department of remote sensing and GIS, University of Tehran
4 Professor of department of remote sensing and GIS, ShahidChamran, University of Ahwaz
چکیده [English]

Extended Abstract
Introduction
Remote sensing has introduced new fields in monitoring and modeling environmental variables on different levels. One of the major advances of remote sensing is the use of quantitative algorithms to estimate the earth’s surface variables. Therefore, it can be regarded as a research and application framework in order to forecast and counteract devastating effects of environmental crisis. Meanwhile, capabilities of MODIS sensor in terms of its various products to estimate the environmental parameters have been explored more than any other remote sensing instruments. Optical remote sensing modeling techniques are robust and strong enough for modeling the relationship between land surface variables and the quantities measured by remote sensing data.
 
Materials & Methods
This research focuses on developing and introducing a new spectral index for modeling the Land Surface Temperature (LST) and vegetation, simultaneously. Land surface temperature is a key parameter in the balance physical processes of the Earth’s water and energy on different levels including from regional to local scales. On the other hand, studying the temporal and spatial variations of vegetation and temperature in different areas as an indicator showing the environmental conditions has the great importance for current and future behaviors of the surface. Therefore, combining these two parameters can lead to high synergies in the use of satellite data for studying the environmental status of the west Asia as the area is experiencing one of the most horrifying environmental degradations of the world. In order to evaluate the developed index, the spatial-temporal relationship of the Normalized Health Environmental Index (NHEI), in relation to the behavior of dust sources in the west Asia is investigated. The main steps of this study include the developing and introducing the remote sensing index that reflects the simultaneous behavior of environmental variables, trending the index based on its changes for the west Asia and finally applying that in studying dust sources of the studied region. The Normalized Health Environmental Index, (NHEI), is developed using MODIS products consisting of MYD11A2, MYD13A2 and MOD44W products. The developed index considers the spatiotemporal behavior of Land Surface Temperature (LST), and vegetation cover, simultaneously. This index is useful for monitoring the environmental health situation of lands by masking the surface water bodies. NEHI is a dimensionless parameter and the range of its values is between -1 to 1. The smaller values indicate that conditions in the region in terms of land surface temperature, vegetation, water and the environmental relevant phenomena are more critical.
 
Results & Discussion
NHEI was used to analyze the trend changes of the most important dust sources in the West Asia during last decade. Due to the high correlation between the results obtained from NHEI and the activities of the origins of dust storms, it can be adapted as a basis for modeling the behavior of these phenomena while such relationship has not been confirmed through applying the conventional indices such as NDVI. NHEI is developed and analyzed for 2002 to 2013. The trend of changes was detected by linear trending process and its relationship with dust sources has been evaluated. Since NHEI shows the changing trend of key elements of the environment, i.e. temperature, vegetation and humidity simultaneously, the results of trending reveal the general decrease of severity and extend of the index.  While the distribution of dust storm hot spots in terms of the index values is showing more scattering for the whole of the west Asia. Although NHEI is not a pure physical parameter with certain and standard unit, however, because of reflecting the combined effects of NDVI and LST as well as its simplicity and strong correlation with environmental parameters, it can be used as a reliable reference index in the environment research at local and macro-scale. Then the values of NHEI within specific land covers were determined, so it has distinct values for different land covers.
 
Conclusion
This study emphasizes on NHEI capabilities in monitoring and modeling environmental variables associated with dust sources, therefore, the average of NHEI in dust sources individually and totally was significantly less and more critical  than the value of NHEI in other areas of the study area. Generally, the results of this study can open a new horizon in the field of land surface variables modeling and investigation by developing new remote sensing indices especially in land degradation and dust storm investigations.

کلیدواژه‌ها [English]

  • MODIS products
  • Normalized Criticality Environmental Index
  • Trending
  • Dust sources

1. ام می تر  پ، 2004. پردازش کامپیوتری تصاویر سنجش از دور، ترجمه امینی، جلال، 1388، انتشارات دانشگاه تهران، تهران.

2. درویشی بلورانی ع، س. ا. نبوی، ح. بهرامی، س. ک. علوی پناه، ح. محمدی، ر. خندان و ح. جلیلیانی، 1392. مطالعه و بررسی اولیه کانون‌های فعال گردوغبارهای فراگیر در غرب آسیا (با تأکید بر طوفان‌های ورودی به ایران)، پژوهشکده ژئوانفورماتیک دانشگاه تهران و معاونت علمی و فناوری ریاست جمهوری- ستاد توسعه فناوری آب، خشکسالی، فرسایش و محیط زیست، تهران.

3. رضایی مقدم م. ح.، خ. ولی زاده کامران، ه. رستم زاده و ع. رضایی، 1391. ارزیابی کارایی داده‌های سنجنده‌ی MODIS در برآورد خشکسالی (مطالعه‌ی موردی: حوضه ی آبریز دریاچه ارومیه)، جغرافیا و پایداری محیط، سال دوم، شماره 5، صص. 52-37.

4. شکیبا ع. ر.، پ. ضیائیان فیروزآبادی، د. عاشورولو، س. نامداری، 388، تحلیل رابطه کاربری اراضی و جزایر حرارتی شهر تهران با استفاده از داده‌های +ETM، سنجش از دور و GIS ایران، سال اول، شماره اول، 56-39.

5. شمسی پور ع. ا.، س. ک. علوی پناه، ح. محمدی، 1389. بررسی کارآیی شاخص های گیاهی و حرارتی ماهواره‌ای NOAA-AVHRR در تحلیل خشکسالی منطقه‌ی کاشان، فصلنامه‌ی علمی پژوهشی تحقیقات مرتع و بیابان ایران، سال هفدهم، شمارهی 3، صص. 465-445.

6. علوی پناه س. ک.، ع. رفیعی امام، س. ز. حسینی و م. ج. بیگلو، 1385. بررسی تغییرپذیری طیفی پدیده‌های مختلف پوشش گیاهی و آب با استفاده از سنجش از دور، مجله پژوهش‌های جغرافیایی، سال سی و هشتم، شماره 58، صص. 99-81.

7. مرکز إدارة معلومات الکوارث والأرشیف الفضائی، 2014، البرنامج الوطنی لمکافحة الغبار فی العراق، بغداد.

8. Amiri, R., Weng, Q., Alimohammadi, A., Alavipanah, S. K. 2009. Spatial–temporal dynamics of land surface temperature in relation to fractional vegetation cover and land use/cover in the Tabriz urban area, Iran. Remote Sensing of Environment, 113: 2606–2617.

9. Anderson, M. C., Norman, J. M., Kustas,W. P., Houborg, R., Starks, P. J., & Agam, N. 2008. A thermal-based remote sensing technique for routine mapping of land-surface carbon, water and energy fluxes from field to regional scales. Remote Sensing of Environment,112: 4227–4241.

10. Deng, Y., Wu, C., Li, M., & Chen, R. 2015. RNDSI: A ratio normalized difference soil index for remote sensing of urban/suburban environments. International Journal of Applied Earth Observation and Geoinformation, 39: 40-48.

11. Diker. K. 1998. Use of geographic information management systems (GIMS) for nitrogen management. Ph. D. Thesis, Department of Chemical and Bioresource Engineering, Colorado State University, Spring 1998.

12. Duan, S. B., Li, Z. L., Tang, B. H., Wu, H., & Tang, R. 2014. Generation of a time-consistent land surface temperature product from MODIS data. Remote Sensing of Environment, 140: 339-349.

13. Gallo, K. P., McNab, A. L., Karl, T. R., Brown, J. F., Hood, J. J., & Tarpley, J. D. 1993. The use of a vegetation index for assessment of the urban heat  island effect. Remote Sensing, 14: 2223-2230.

14. Gorgani, S. A., Panahi, M., & Rezaie, F. 2013. The Relationship between NDVI and LST in the urban area of Mashhad, Iran. In International Conference on Civil Engineering Architecture & Urban Sustainable Development.

15. Goward, S. N., Cruickshanks, G. D., & Hope, A. S. 1985. Observed relation between thermal emission and reflected spectral radiance of a complex vegetated landscape. Remote Sensing of Environment, 18: 137-146. Gudina, L, F., Henrik, m., Rasmus, F., Simon, R, P., 2013, Automated Water Extraction Index: A new technique for surface water mapping using Landsat imagery,  Remote Sensing of Environment, 140: 23-35.

16. Jensen, J. R. (1995). Introductory Digital Image Processing: A Remote Sensing Perspective.University of South Carolina, Third Eddithion.

17. Jiang, J., & Tian, G. 2010. Analysis of the impact of Land use / Land cover change on Land Surface Temperature with Remote Sensing. Procedia Environmental Sciences, 2: 571–575.

18. Karnieli, A., Agam, N., Pinker, R. T., Anderson, M., Imhoff, M. L., & Gutman, G. G. 2010. Use of NDVI and land surface temperature for drought assessment: Merits and limitations. Journal of Climate, 23: 618–633.

19. Kumar, D. 2015. Remote Sensing Based Vegetation Indices Analysis to Improve Water Resources Management in Urban Environment. Aquatic Procedia, 4: 1374-1380.

20. Liang, S., Li, X., & Wang, J. (Eds.). (2012). Advanced Remote Sensing: Terrestrial Information Extraction and Applications. Academic Press.

21. Quan, W., Samuel, A., John, t., Andre, G., 2005, On the relationship of NDVI with leaf area index in a deciduous forest site, Remote Sensing of Environment, 4: 244-255.

22. Senanayake, I. P., Welivitiya, W. D. D. P., Nadeeka, P. M. 2013. Remote sensing based analysis of urban heat islands with vegetation cover in Colombo city, Sri Lanka using Landsat-7 ETM+ data. Urban Climate, 5: 19–35.

23. Si, B, D., Zha, L, L., Bo, H, T.,Hua, W., Ronglin, T., 2013, Generation of a time-consistent land surface temperature product from MODIS data, Remote Sensing of Environment, 140:339- 349.

24. Shunlin,L.,2004,Quantitative Remote Sensing Of Land Surfaces,Wiley Interscience Publication.

25. Solaimani, K., F. Shokrian, R. Tamartash & M. Banihashemi. 2011. Landsat ETM+ Based Assessment of Vegetation Indices in Highland Environment. Journal of Advances in Developmental Research, 2: 5-13.

26. Sun, D., & Kafatos, M. 2007. Note on the NDVI LST relationship and the use of temperature related drought indices over North America. Geophysical Research Letters, 34.

27. Wilhite, D. A. 2000. Drought as a natural hazard: concepts and definitions. Drought, a global assessment, 1: 3-18.

28. Wang, Z., Schaaf, C. B., Strahler, A. H., Chopping, M. J., Román, M. O., Shuai, Y., & Fitzjarrald, D. R. 2014. Evaluation of MODIS albedo product (MCD43A) over grassland agriculture and forest surface types during dormant and snow-covered periods. Remote Sensing of Environment, 140: 60-77.

29. Wan, Z. 2014. New refinements and validation of the collection-6 MODIS land-surface temperature/emissivity product. Remote sensing of Environment, 140: 36-45.