پایش زمانی و مکانی پدیده گرد و غبار با استفاده از داده های ماهواره ای در جنوب شرق ایران،با تأکید بر منطقه جازموریان

نوع مقاله: مقاله پژوهشی

نویسندگان

1 کارشناس ارشد مهندسی منابع طبیعی،گرایش مدیریت مناطق بیابانی،دانشگاه فردوسی مشهد

2 استادیار گروه مدیریت مناطق خشک و بیابانی،دانشکده منابع طبیعی و محیطزیست،دانشگاه فردوسی مشهد

3 اداره کل منابع طبیعی و آبخیزداری استان سیستان و بلوچستان،زاهدان

10.22131/sepehr.2018.32339

چکیده

منطقه جازموریان واقع در جنوب شرقی ایران- بین دو استان کرمان و سیستان و بلوچستان ایران، هماکنون به دلیل خشکسالی و سدسازیهای متعدد، کاملاً خشک و تبدیل به بیابان شده است. این منطقه یکی از مناطق کلیدی تولید گردوغبار کشور است، اما تاکنون مطالعات محدودی در این منطقه بخصوص در زمینه گردوغبار صورت گرفته است. بهمنظور بررسی گردوغبار در این منطقه از دادههای ماهوارهای شامل شاخص گردوغبار AAI بدست آمده از سنجندههایTOMS_N7 (1978-1993) ، EP (1996-2005)TOMS_ و OMI (2005-2014) و شاخص عمق نوری گردوغبار  AODحاصل سنجندههای MISR (2000- 2013) و MODIS (2000-2014) استفاده گردید. نمودار تغییرات زمانی شاخصها در منطقه جازموریان و نقشههای پهنهبندی رخدادهای گردوغبار برای جنوب شرق ایران تهیه شد. چند نقطه در جنوب شرق ایران به عنوان کانون تولید گردوغبار؛ شامل: زابل، منطقهای در پاکستان نزدیک به مرز ایران، سواحل مکران (خلیج گواتر) و منطقه جازموریان شناسایی گردید. با توجه به تغییرات سالانه شاخصها میتوان چندین سال یا دوره را بهعنوان دورههای اوج طوفان گردوغبار در منطقه شناسایی کرد، 1363 (شروع رخداد طوفانهای گردوغبار)، 1370، 1382-1383، 1387 و1391. بهطور کلی روند صعودی در مقادیر شاخصها را میتوان در نتیجه ساخت سدهای متعدد بر سر راه رودهای تغذیه کننده جازموریان و درنتیجه خشکشدن تدریجی آن دانست و افزایشهای ناگهانی در مقادیر میتواند در نتیجه وقوع خشکسالیها باشد.عمده وقایع گردوغبار در منطقه جازموریان در دو فصل بهار و تابستان اتفاق میافتد و بهترتیب در فصل زمستان و پاییز از شدت آن کاسته میشود. بنابراین فعالیت گردوغبار در چهار ماه می، ژوئن، ژولای و آگوست شدید و در چهار ماه نوامبر، دسامبر، ژانویه و فوریه ضعیف تر از سایر ماهها میباشد.
 

کلیدواژه‌ها


عنوان مقاله [English]

Monitoring of spatial and temporal variability of desert dust over the Hamoun e Jazmurian, Southeast of Iran based on the Satellite Data

نویسندگان [English]

  • Maryam Arjmand 1
  • Alireza Rashki 2
  • Hossein Sargazi 3
1 M.Sc. Student of management of desert regions, Department of natural resources and environment, Ferdowsi University Of Mashhad
2 Faculty of natural resources and environment, Ferdowsi University of Mashhad
3 Department of natural resources of Sistan and Baluchestan Province, Zahedan
چکیده [English]

Extended Abstract
Introduction
Dust cycles are an integral part of the Earth system, which emits about 2000 tons of dust every year (Shao et al., 2011) and plays an important role in the global climate changes (Park & Jong, 2008). The frequency of dust events in the arid and semi-arid regions is much higher, meanwhile, dried lakes have the largest ration in dust emission (Goudie and Middleton, 2006). Hamoun e Jazmurian is a dried lake located in an homonymous topographic-low basin in southeast Iran and a main source for high dust emissions under favorable weather conditions, but so far limited studies have been carried out in this area, especially on dust. Remote sensing provides useful information about spatiotemporal variability of dust storms over the arid environment of the world. So the present study examines the spatiotemporal variability of dust activity over the region by identifying the dust events from the satellite data.
 Materials & Methods
In this work, spatial and temporal variability of dust aerosol were analyzed over the arid environment of Jazmurian region and surroundings located on southeast of Iran  by means of monthly mean data, including Absorption Aerosol Index (AAI), values products of TOMS-Nimbus7 (N7) (1979-1984), TOMS-Earth Probe (EP)(1990-2005) and OMI (2005-2014) as well as Deep Blue AOD of MODIS-Terra (2000-2007) and MODIS-Aqua(2002-2014) and Aerosol Optical Depth (AOD555nm) of MISR (2000-2013).
 
Results & Discussion
 The results indicated that several  hot points of dust including Sistan/Hamoun, Rootak, a region in Pakistan near the border with Iran, Makran coast, Gwadar Bay ion the southeast corner of Iran and the Jazmurian region. Overall, the annual trend of both AAI and AOD values obtained from all sensors, are increasing during the periods expect MODIS retrievals which has negative partial amounts, the time periods of 2002-2004, 2008-2009 and 2011-2012 are the peak of dust storms over the Jazmurian region because of human activities and severe droughts. Seasonal variations of AAI and AOD values showed the major dust activities occur during spring and summer and it is minimum in autumn over Jazmurian region. high activity of dust storms are in four months of May, June, July and August and low in the four months of November, December, January and February
 Conclusion
Hamoun e Jazmourian is one of the active dust emission regions in south east of Iran. The amount of dust and affected areas have increased in recent years. Severe droughts in recent years and numerous dam construction are one of the main factors of dust emission increase in this region.

کلیدواژه‌ها [English]

  • Dust
  • AAI
  • AOD
  • Hamoun e Jazmurian
  • Satellite data

1. اسماعیلی، تجریشی، دانشکار آراسته؛ امید، مسعود، پیمان. (1388). پهنه‌بندی نواحی مستعد در تولید طوفان غبار در کشور و بررسی شدت، تداوم و گستره مکانی طوفان‌های غبار با استفاده از فناوری سنجش از دور، هشتمین کنگره بین‌المللی مهندسی عمران، 21-23 اردیبهشت 1388، دانشگاه شیراز، 1-8

2. راشکی، علیرضا. (1392).بررسی روند زمانی و مکانی ریزگردهای جنوب غرب آسیا و ارتباط آن با خشک شدن دریاچه‌های هامون. سومین همایش ملی فرسایش بادی و طوفان‌های گردوغبار، 25-26 دی ماه 1392- یزد، دانشگاه یزد،1- 11

3. شعبانی گورجی، صاحب‌زاده، کاظم، بهروز (1394). بررسی تاثیر خشکسالی‌های متوالی بر زیست بوم جازموریان جنوب شرق ایران. کنفرانس بین‌المللی علوم، مهندسی و فناوری‌های محیط زیست، 15-16 اردییهشت ماه 1394، تهران، 1-10

4. کاردان، عزیزی، زواررضا، محمدی؛ رحمت‌اله، قاسم، پیمان، حسین (1388). مدل‌سازی تأثیر دریاچه بر مناطق مجاور (مطالعه‌ی موردیک مدل‌سازی اقلیمی حوضه‌ی آبخیز جازموریان با ایجاد دریاچه‌ی مصنوعی). مجله علمی- پژوهشی علوم مهندسی آبخیزداری ایران، سال‌سوم، شماره7، 15-22

5. گودی، ای. اس، میدلتون، ان. جی (2006).ریزگرد بیابانی در سیستم جهانی. ترجمه حسین آذریوند، حمید غلامی و حسن خسروی، انتشارات دانشگاه تهران

6. محمدی، علی (1389). رسوب شناسی و ژئوشیمی نهشته‌های پلایای جازموریان. فصلنامه علمی- پژوهشی خشک بوم، سال اول- شماره1، 68- 79

7. مهدوی نجف‌آبادی، احمدی کهنعلی، رسول، جاسم(1392). بررسی ظرفیت‌های اکوتوریسمی منطقه جازموریان در شرایط خشکسالی. سومین همایش ملی سلامت محیط زیست و توسعه پایدار، 30 بهمن و اول اسفندماه 1392، دانشگاه آزاد اسلامی واحد بندرعباس، 1-30

8. Alam, K., Qureshi, S., & Blaschke, T. (2011). Monitoring spatio-temporal aerosol patterns over Pakistan based on MODIS, TOMS and MISR satellite data and a HYSPLIT model. Atmospheric Environment, 45(27), 4641-4651.

9. ‘Baddock, M. C., Bullard, J. E., & Bryant, R. G. (2009). Dust source identification using MODIS: A comparison of techniques applied to the Lake Eyre Basin, Australia. Remote Sensing of Environment, 113(7), 1511-1528.

10. Bollasina, M., Nigam, S., & Lau, K. M. (2008). Absorbing aerosols and summer monsoon evolution over South Asia: An observational portrayal.Journal of Climate, 21(13), 3221-3239.

11. Curier, R. L., Veefkind, J. P., Braak, R., Veihelmann, B., Torres, O., & De Leeuw, G. (2008). Retrieval of aerosol optical properties from OMI radiances using a multiwavelength algorithm: Application to western Europe. Journal of Geophysical Research: Atmospheres, 113(D17).

12. Guo, J.P., Zhang, X.Y., Che, H.Z., Gong, S.L., An, X.Q., Cao, C.X., Guang, J., Zhang, H., Wang, Y.Q., Zhang, X.C., Xue, M., and Li, X.W. (2009). Correlation between PM concentrations and aerosol optical depth in eastern China. Atmospheric Environment. 43( 37), 5876-5886.

13. Hsu, N. C., Tsay, S. C., King, M. D., & Herman, J. R. (2004). Aerosol properties over bright-reflecting source regions. Geoscience and Remote Sensing, IEEE Transactions on, 42(3), 557-569.

14. Hsu, N. C., Herman, J. R., Torres, O., Holben, B. N., Tanre, D., Eck, T. F., ... & Lavenu, F. (1999). Comparisons of the TOMS aerosol index with Sun photometer aerosol optical thickness: Results and applications. Journal of Geophysical Research: Atmospheres, 104(D6), 6269-6279.

15. Kahn, R. A., GAAItley, B. J., Garay, M. J., Diner, D. J., Eck, T. F., Smirnov, A., & Holben, B. N. (2010). Multiangle Imaging SpectroRadiometer global aerosol product assessment by comparison with the Aerosol Robotic Network. Journal of Geophysical Research: Atmospheres, 115(D23).

16. Kaskaoutis, D. G., Kosmopoulos, P., Kambezidis, H. D., & Nastos, P. T. (2007). Aerosol climatology and discrimination of different types over Athens, Greece, based on MODIS data. Atmospheric Environment, 41(34), 7315-7329.

17. Kaufman, Y. J., Tanré, D., Dubovik, O., Karnieli, A., & Remer, L. A. (2001). Absorption of sunlight by dust as inferred from satellite and ground-based remote sensing. Geophysical Research Letters, 28(8), 1479-1482.

18. Kellogg, CA. Griffin, DW. Garrison, VH. Peak, KK. Royall N. Smith RR. (2004). Characterization of aerosolized bacteria and fungi from desert dust events, in Mali, West Africa. Aerobiologia, 20(2). 305-322.

19. Kiss, P., Janosi, I. M., & Torres, O. (2007). Early calibration problems detected in TOMS Earth Probe aerosol signal. Geophysical research letters,34(7).

20. Namdari, S., Valizade, K. K., Rasuly, A. A., & Sarraf, B. S. (2016). Spatio-temporal analysis of MODIS AOD over western part of Iran. Arabian Journal of Geosciences, 9(3), 1-11.

21. Ogren, J. A. (1995). A systematic approach to in situ observations of aerosol properties. Aerosol forcing of climate, 215-226.

22. Park, S. U., & Jeong, J. I. (2008). Direct radiative forcing due to aerosols in Asia during March 2002. Science of the total Environment, 407(1), 394-404.

23. Pope III, C. A., Burnett, R. T., Thun, M. J., Calle, E. E., Krewski, D., Ito, K., & Thurston, G. D. (2002). Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate AAIr pollution. Jama, 287(9), 1132-1141.

24. Prospero, J. M., Ginoux, P., Torres, O., Nicholson, S. E., & Gill, T. E. (2002). Environmental characterization of global sources of atmospheric soil dust identified with the Nimbus 7 Total Ozone Mapping Spectrometer (TOMS) absorbing aerosol product. Reviews of geophysics, 40(1).

25. Rashki, A., Kaskaoutis, D. G., Goudie, A. S., & Kahn, R. A. (2013). Dryness of ephemeral lakes and consequences for dust activity: the case of the Hamoun drAAInage basin, southeastern Iran. Science of the Total Environment, 463, 552-564.

26. Rashki, A., Kaskaoutis, D. G., Eriksson, P. G., Rautenbach, C. D. W., Flamant, C., & Vishkaee, F. A. (2014). Spatio-temporal variability of dust aerosols over the Sistan region in Iran based on satellite observations.Natural hazards, 71(1), 563-585.

27. Rashki, A., Kaskaoutis, D. G., Francois, P., Kosmopoulos, P. G., & Legrand, M. (2015). Dust-storm dynamics over Sistan region, Iran: seasonality, transport characteristics and affected areas. Aeolian Research, 16, 35-48.

28. Samet, J. M., Dominici, F., Curriero, F. C., Coursac, I., & Zeger, S. L. (2000). Fine particulate AAIr pollution and mortality in 20 US cities, 1987–1994.New England journal of medicine, 343(24), 1742-1749.

29. Shao, Y., Wyrwoll, K. H., Chappell, A., Huang, J., Lin, Z., McTAAInsh, G. H., ... & Yoon, S. (2011). Dust cycle: An emerging core theme in Earth system science. Aeolian Research, 2(4), 181-204.

30. Shi-gong W. De-bao Y. Jiong J. (1995). Study on the Formative Causes and Countermeasures of the CatastrophicSandstorm Occurred in Northwest China, Journal of Desert Research, 15(1),19-30.

31. Torres, O., Tanskanen, A., Veihelmann, B., Ahn, C., Braak, R., Bhartia, P. K., ... & Levelt, P. (2007). Aerosols and surface UV products from Ozone Monitoring Instrument observations: An overview. Journal of Geophysical Research: Atmospheres, 112(D24).

32. www.gdata1.sci.gsfc.nasa.gov.