پیاد ه سازی کاداستر سه بعدی شهری بر مبنای تصاویر هوایی با قابلیت مدیریت املاک در کلان شهر تهران

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد سنجش از دور، دانشکده مهندسی نقشه برداری و اطلاعات مکانی، پردیس دانشکده های فنی، دانشگاه تهران

2 دانشیار مرکز سنجش از دور و GIS دانشگاه شهید بهشتی

10.22131/sepehr.2018.33549

چکیده

امروزه به دلیل رشد فزاینده شهرنشینی، بسیاری از شهرهای بزرگ دنیا با موضوع کمبود زمین برای ساخت وساز و همچنین رکود اقتصاد بهره برداری از زمین و املاک مواجه شده اند و مسئولین شهرها برای مقابله با این مشکلات به فکر مدیریت بهینه املاک افتاده اند، بر این اساس هدف پژوهش حاضر تولید مدل سه  بعدی کاداستر شهری جهت بهبود وضعیت مدیریت املاک در کلان شهر تهران با رویکردی اجرایی می باشد. در این تحقیق سه دستگاه آپارتمان در محدوده منطقه 5 شهرداری تهران سه فاز تحقیقاتی مورد مطالعه قرار گرفت هاند. فاز اول، موضوع شناختی تحقیق بر مبنای استاندارد جهانی LADM. فازدوم،ضرورت تحقیق در شهر تهران جهت نیل به سوی توسعه پایدار. فاز سوم، عملیات و نتایج بر اساس نقشه 1:1000  شهر تهران که طی سال های 1389 تا 1393 تولیدشده است،موردارزیابی قرارگرفته است. جهت پیادهسازی این مدلهاازتصاویرهوایی بامقیاس 1:3000 وازنرمافزارهای ArcGIS10وSketchUpجهت تولیدوبصری سازی استفاده گردید،وبهمنظورارزیابی  دقت هندسی مدل از جذر میانگین مربعات خطا و ضریب همبستگی بهره گرفته شد. نتایج پیاده سازی بر روی مجموع  سه دستگاه ساختمان مورد مطالعه نشان داد، که دقت مسطحاتی مؤلفه Xو Yبه ترتیب با جذر میانگین مربعات خطا 1.451 مترو 1.431 متروباضریب همبستگی 93.7%و 97.1 % ودقت مؤلفه ارتفاعی باجذرمیانگین مربعات خطا 2.605 متروضریب همبستگی 66.5% دارای تطابق زیادی بادادههای مرجع بودهاند. بعلاوه جهت آنالیز روش پیشنهادی تحقیق، مدل تولید شده با روش های آنالیز شی گرا، شبکه عصبی مصنوعی، دیجیتایز دستی و روش خوش برش - صادقیان (2016)، مورد مقایسه قرار گرفت که نتیجه آن مناسب ارزیابی شد. به نحوی که تنها در یک مورد دقت مسطحاتی و یک مورد دقت ارتفاعی، روش دیجیتایز دستی دارای نتیجه بهتری نسبت به روش پیشنهادی بود.

کلیدواژه‌ها


عنوان مقاله [English]

The implementation of 3D urban cadastre based on aerial imagery by the real estate management ability in Tehran Metropolis

نویسندگان [English]

  • Mehdi KhoshboreshMasouleh 1
  • Saeed Sadeghian 2
1 M.Sc. Student in RS engineering, school of surveying and geospatial engineering, College of Engineering, University of Tehran, Tehran, Iran
2 Associate professor, ShahidBeheshti University, Tehran, Iran
چکیده [English]

Extended abstract
Introduction
Over the past two centuries, in many countries in the world, population density has dramatically grown in urban areas, resulting in cities to witness rising construction of multi-story apartment buildings and utilizing above and below ground spaces. Expansion of tower construction and development of infrastructure networks are among the obvious examples of using above and below ground spaces of cities. Today, in order to manage these complex structures, the urban managers use three-dimensional urban models to plan for the future of the city. The land information is considered as the basis for the development of each country; among other things, cadaster as a parcel-based land information system can accurately determine the status and location of the real estates. Unlike the traditional cadastral system, the 3D cadaster is capable of modeling such features as buildings considering the third dimension i.e. height, thereby establishing the access rights for owners, whether individuals or organizations. Currently, the real estate management model is one of the best and most efficient ones for the implementation of 3D cadaster, which is originally developed based on the unified modeling language (UML). Accordingly, the aim of the present research is to generate a 3D urban cadastral model using the aerial imagery to improve the real estate management in the metropolitan area of Tehran by taking an executive approach.
 
Materials and Methods
This is an applied research, therefore, in order to ensure that the results are close to the reality and to consider the current conditions of Tehran in terms of the information required, the instructions for the provision of spatial information of the municipality of Tehran are used in the scale of 1:1000 by the photogrammetry method and the coordinated instructions of the national mapping organization are used for the production of a 3D cadastral model. The study was conducted in the northwest of Tehran in zone 5, district 5 of Tehran municipality. Being located in the foothills with the favorable climate, convenient access and distinctive urban fabric has caused the region to have the highest growth in the population and physical body for the last two decades. Besides, the passage of the metro line 2 (the busiest metro line of Tehran) and the line 10 of BRT buses (including long bus lines) in zone 5 in the area of the second square of Sadeghieh and the heavy population density in this region are among the most important criteria for choosing this area for the implementation of research objectives. The data used in this research are divided into two categories: spatial (geometric or situational) and descriptive data. Spatial data include aerial photogrammetric images (image pair) with 1:3000 scale using WILD-17126 cameras with the focal length of 303.40 mm and 0.5m contour interval under the UTM system, WGS84 reference ellipsoid and Ultracam XP digital camera images with the scale of 1:10,000.
 
Results and Discussion
Considering that the 1:1000 map of Tehran was prepared during 2010-2014 by the municipality of Tehran and used as a detailed map in Tehran city, the planimetric criteria and the matching of descriptive information and the criteria of height accuracy, field activity and production of accurate height data sets are done by land surveying of desired models. In order to evaluate the geometric accuracy of the model, the root mean square error (RMSE) and correlation coefficient (CC) were used. The results of the implementation on a total of three studied buildings show that the planimetric accuracy of the X and Y components were 1.451 m and 1.431 m for RMSE and 93.7% and 97.1% for CC, respectively. The accuracy of the height component with 2.605 m for RMSE and 66.5% for CC is consistent with the reference data. In addition, for analyzing the proposed research method, the model was compared with the object-oriented analysis, artificial neural network, manual digitization, and Khoshboresh&Sadeghian (2016) method, which was rated as appropriate, so that in only one case of planimetric accuracy and one case of height accuracy, the manual digitization method has better results than the proposed method.
 
Conclusion
Hence, it can be concluded that, although a 3D cadastral system has not been widely implemented in any country of the world, however, most countries seek to achieve such system by providing appropriate solutions, because as mentioned above, having such cadastral system, many problems related to land management and related crises can be solved. In this paper, the first prototype of 3D cadastral implementation in zone 5, district 5 of Tehran was analyzed using the large-scale digital aerial images. The results of this modeling show that the generated model matches the accuracy criteriaproperly.

کلیدواژه‌ها [English]

  • 3D Urban Cadastre
  • LADM
  • Aerial imagery
  • Uraban management
  • Tehran metropolis

1- باختر،سیدمحمدرسول، (1394). قانون زمین شهری دررویه قضایی،انتشارات جاودانه جنگل.

2- بینز،اندرو، (1388). خط ‌مشی بین‌المللی درمورددیدگاه جدیدسیستم‌های مدیریت زمین،شهرنگار، 25-19.

3- پورکمال،محمد، (1377). مقدمه‌ای برشناخت کاداستر وکاربردهای آن،مرکزاطلاعات جغرافیایی شهر تهران.

4- خوش ‌برش ماسوله،صادقیان؛مهدی،سعید، (1395). امکان پیاده‌سازی کاداسترسه بعدی بااستفاده از داده‌های لیدار به عنوان ابزاری برای مدیریت شهری،سومین کنگره علمی - پژوهشی افق‌های نوین در حوزه مهندسی عمران،معماری،فرهنگ و مدیریت شهری ایران،انجمن توسعه و ترویج علوم و فنون بنیادین، 10-1.

5- خوش ‌برش ماسوله،صادقیان،کریمی مزرعه شاهی؛مهدی،سعید،غلامعلی، (1395). به سوی کاداسترسه و چهاربعدی درایران - مطالعه موردی: منطقه 8 شهرداری تهران،چهارمین کنگره بین‌المللی مهندسی عمران،معماری و توسعه شهری،دانشگاه شهیدبهشتی، 14-1.

6- خوش‌برشماسوله،صادقیان؛مهدی،سعید، (1396). بررسی مؤلفه‌های مدل مدیریت املاک (ISO 19152 - LADM) باتأکیدبراهمیت آن در کاداسترسه و چهاربعدی طی سال‌های 2017-2001،بیست و چهارمین همایش و نمایشگاه ملی ژئوماتیک،سازمان نقشه‌برداری کشور، 11-1.

7- خیرالدین،امیدی بهره‌مند؛رضا،مسعود، (1395). بررسی و تحلیل چگونگی تأثیرابرپروژه‌های شهری برقیمت مسکن درعمق محلات مجاور - مطالعه موردی: بزرگراه طبقاتی صدر،فصلنامه علمی - پژوهشی اقتصاد و مدیریت شهری، 5 (17)، 29-13.

8- دستورالعمل تهیه اطلاعات مکانی، (1390). شهرداری تهران.

9- دستورالعمل همسان نقشه‌برداری - جلددوم: نقشه برداری هوایی، (1386). سازمان نقشه برداری کشور.

10- دستورالعمل همسان نقشه‌برداری - جلدسوم: سیستم اطلاعات مکانی. (1386). سازمان نقشه‌برداری کشور.

11- رحیمی،اکبر، (1396). تغییرات کاربری زمین شهری و اثرآن برکاربری‌های عمومی در شهر،نشریه علمی - پژوهشی جغرافیاوبرنامه‌ریزی، 21 (59)، 88-65.

12- رفیعیان،مجتبی، (1389). تأملی برالگوهای نوین برنامه‌ریزی و مدیریت تغییرات کاربری زمین شهری،ماهنامه منظر،شماره 10، 46-42.

13- زاهدی،جمشیدی اصل،قوامی؛نگار،بیتا،سیدمرسل، (1395). معرفی مدل دامنه اداره زمینی با تأکید بر نقش مؤلفه‌های مکانی آن،دومین کنفرانس ملی مهندسی فناوری اطلاعات مکانی،دانشگاه صنعتی خواجه نصیرالدین طوسی، 8-1.

14- صفری،بیگی ‌نیا،سمیع‌زاده،ذاکری ‌فر؛سعید،عبدالرضا،مهدی،سیدجمال (1395). طراحی و ساماندهی مؤلفه‌های اندازه‌گیری عملکردمدیریت شهری باتأکیدبرحکمرانی خوب وارزیابی متوازن،فصلنامه علمی - پژوهشی اقتصاد ومدیریت شهری، 4 (16)، 125-107.

15- عطازاده،کلانتری سلطانیه،رجبی‌فرد؛بهنام،سعیدمحسن،عباس، (1394). توسعه مدل‌های اطلاعات ساختمان به منظور ثبت ملک در ساختمان‌های چند طبقه،دوماهنامه شهرنگار،شماره 72.

16- لگزیان،رنج آزمای آذری؛احسان،محمد، (1389). بررسی و تحلیل مدیریت توسعه زمین ازطریق رویکر برنامه اصلاح مجددزمین با تأکیدبرمقوله انتقال حق مالکیت زمین،دوفصلنامه مدیریت شهری،شماره 25، 167-147.

17- موراتا،ماساهیکو، (1390). برنامه کاربردی سامانه اطلاعات مکانی سه بعدی با هدف برنامه ریزی شهری بر اساس مدل سه بعدی شهر،نشریه نقشه برداری،شماره 109، 25-21.

18- ملکی،محمد (1386). جایگاه و نقش سیستم اطلاعات جغرافیایی (GIS) در مدیریت مربوط به امور شهری با تکیه بر مدیریت املاک و زمین‌ها در شهرها،اولین کنفرانس سیستم اطلاعات جغرافیایی شهری،دانشگاه شمال،آمل، 9-1.

19- Abraham, L., &Sasikumar, M. (2012). Automatic Building Extraction from Satellite Images using Artificial Neural Networks. Procedia Engineering, 50, 893–903.

20- Aien, A. (2013). 3D Cadastral Data Modelling, Ph.D thesis, Centre for Spatial Data Infrastructures and Land Administration, Department of Infrastructure Engineering, School of Engineering, The University of Melbourne, Victoria, Australia, 474 pp.

21- Aien, A., Rajabifard, A., Kalantari, M., & Williamson, I. (2016). Review and Assessment of Current Cadastral Data Models for 3D Cadastral Applications. Lecture Notes in Geoinformation and Cartography, 423–442.

22- Aydin, C. C., Demyr, O., &Atasoy, M. (2004). 3D Cadastre and Its Integration with 3D GIS in Turkey, FIG Working, Athens, 1-15.

23- Babalola, S. O., Abdul-Rahman, A., &Choon, T. L. (2015). A brief review of Land Administration Domain Model and Its temporal dimension, Journal of advanced review on scientific research, vol.6, 1-15.

24- Badea, G. (2013). Software possibilities for 3D representations urban management using 3D models, Recent Advances in Geodesy and Geomatics Engineering, 247-254.

25- Choon, T. L., &KamSeng, L. (2013). Towards a Malaysian Multipurpose 3D Cadastre based on the Land Administration Domain Model (LADM) – An Empirical Study, 5th Land Administration Domain Model Workshop, Kuala Lumpur.

26- Dahiya, S., Garg, P. K., &Jat, M. K. (2013). Object oriented approach for building extraction from high resolution satellite images. 2013 3rd IEEE International Advance Computing Conference (IACC).

27. Dixon, P. (2002). Ripley’s K function. Encyclopedia of Environmetrics, Volume 3, pp 1796–1803.

28- Reis, S., Torun, A. T., &Bilgilioğlu, B. B. (2017). Investigation of Availability of Remote Sensed Data in Cadastral Works. Cadastre: Geo-Information Innovations in Land Administration, pp. 63–76.

29- Stoter, J. E. (2004). 3D cadastre, Ph.D thesis, TechnischeUniversiteit Delft the Netherland, 344 pp.

30- Kitay, G. M. (1985). Land acquisition in developing countries: policies and procedures of the public sector, Lincoln institute of land policy, Boston.

31- Lemmen, C., van Oosterom, P., & Bennett, R. (2015). The Land Administration Domain Model, Land Use Policy, 535-545.

32- Lemmen, C., (2012). A Domain Model for Land Administration, Ph.D thesis, TechnischeUniversiteit Delft the Netherland, 244 pp.

33- Lowner, M., & Becker, T. (2017). Framework for on an open 3D urban analysis, Lecture notes in geoinformation and cartography, 305-321.

34- Liang, J., Shen, Sh., Jianhua Gong, J., Liu, J., & Zhang, J. (2016). Embedding user-generated content into oblique airborne photogrammetrybased 3D city model, International Journal of Geographical Information Science, 1-16.

35- ISO. (2011). ISO 19152:2012, Geographic Information – Land Administration Domain Model, edition 1. ISO, Geneva.

36- OGC, (2009). Open Geospatial Consortium, Inc.http://www.opengeospatial.org/ (Accessed 29 Jan 2017).

37- Onsrud, H., (1999). The UNECE (MOLA) initiatives for Europe and their potential impact on international land administration, UN-FIG Conference on Land Tenure and Cadastral Infrastructures for Sustainable Development. Melbourne, Australia.

38- Tuladhar, A.M., (2004). Parcel-based geo-information system: concepts and Guidelines, Ph.D thesis, TechnischeUniversiteit Delft the Netherland, 252 pp.

39- Qudsia Hamid, Q., Chauhdry, M. H., Mahmood, SH., &Farid, M. (2016). ArcGIS and 3D Visualization of Land Records: A Case Study of Urban Areas in Punjab, National Academy Science Letters, 1-4.

40- Wakker, J.W., Van der Molen, P. and Lemmen, C.H.J., (2003). Land registration and cadastre in the Netherlands, and the role of cadastral boundaries, the application of GPS technology in the survey of cadastral boundaries. Journal of Geospatial Engineering, Official Publication of the Hong Kong Institution of Engineering Surveyors, 5(1), pp. 3-10.

41- Wen-Chang Cheng. (2006). Neural-Network-Based Photometric Stereo for 3D Surface Reconstruction.The 2006 IEEE International Joint Conference on Neural Network Proceedings.

42- Zhang, G., Huang, Q., Zhu A. X., & Keel, J. H. (2016). Enabling point pattern analysis on spatial big data using cloud computing: optimizing and accelerating Ripley’s K function, International Journal of Geographical Information Science, 30:11, pp. 2230-2252.

43- http://cb.ssaa.ir/