نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد سنجش از دور دانشگاه تهران

2 استادیار گرایش سنجش از دور دانشکده مهندسی نقشه برداری و اطلاعات مکانی دانشگاه تهران

چکیده

دمای سطح زمین و گسیلندگی دو ویژگی فیزیکی مهم از سطح زمین هستند. محاسبه دمای سطح زمین اهمیت زیادی در مطالعات محیطی، هواشناسی، بررسی تبخیر و تعرق و فعل و انفعالات بین زمین و جو دارد .در سالیان اخیر تصاویر ابرطیفی حرارتی به دلیل دارا بودن تعداد زیاد باندهای حرارتی در مقایسه با تصاویر فراطیفی، به یک ابزار قدرتمند برای تخمین دمای سطح زمین تبدیل شدهاند. هدف اصلی در این تحقیق تهیه نقشههای حرارتی و گسیلندگی بااستفاده از دو روش مجزای TESوARTEMISS از تصاویر سنجنده ابر طیفی حرارتی هواییHyTES وهمچنین تخمین پارامترهای جوی در این تصاویر میباشد. نوآوری اصلی این تحقیق پیاده سازی روشهایTESوARTEMISSبرای اولین بار روی داده ابرطیفی های تس است و همچنین در این تحقیق، پارامترهای جوی مورداستفاده درARTEMISSاز روش آیزاک بدست آمده است. اینتحقیقشاملسهمرحلهاصلیاست. درمرحله اول بعد از حذف باندهای نویزی تصویر و انتخاب 202 باند بهینه،الگوریتم SETکه شامل مدلهایMMD, NEMوRATIOمی باشد، بر روی تصویر اعمال شدند.  در مرحله دوم با استفاده از تصحیح جوی آیزاک، پارامترهای جوی از قبیل گذردهی جوی و رادیانس مسیر محاسبه شدند. در مرحله آخر الگوریتم ARTEMISSبه منظور تخمین دما و گسیلندگی، بر روی این نوع تصویر اعمال شد.  در پایان جهت ارزیابی روش های پیشنهادی از محصولات دما و گسیلندگی سنجنده HyTES که توسط ناسا عرضه میگردد، استفاده شد. نتایج ارزیابی نشان میدهد که RMSEدما برای روشهایTES وARTEMISSبه ترتیب برابر با  6/0 و 2/1 درجه کلوین و برای گسیلندگی نیز در باند نمونه  177 به ترتیب در دو روش  01/0 و 02/0 می باشد. نتایج حاصل نشان می دهند که الگوریتمهایTESوARTEMISS،روشهای کارآمدی در تخمین دما و گسیلندگی می باشند.

کلیدواژه‌ها

عنوان مقاله [English]

Emissivity and land surface temperature mapping fromHyTES thermal hyperspectral images using TES and ARTEMISS algorithms

نویسندگان [English]

  • faeze Soleimani vosta kolaei 1
  • Mehdi Akhoondzadeh Hanzaei 2

1 M.Sc. student of Remote Sensing Division, School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Iran

2 Assistant Professor, Remote Sensing Division, School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Iran

چکیده [English]

Extended abstract
Land Surface Temperature (LST) and Emissivity are two significant physical features of the Earth’s surface and atmosphere. The calculation of land surface temperaturehas a great significance in environmental studies, meteorology, evapotranspiration study, interactions between land surface and the atmosphere, detection of earthquake- related thermal anomalies, monitoring the drought,  fire and energy balance models on the surface of the earth on a regional and global scale.The use of remote sensing technology and types of satellite images as one of the most important sources of data collection to study and monitor the land and environmental resources has attracted the attention of many experts and specialists of various sciences including environment, meteorology, hydrology, etc. in recent years.In recent years, hyperspectralthermal images have become a powerful tool for estimation of the land surface temperature due to the large number of thermal bands. The main purpose of this research is to obtain land surface temperature and emissivity using two distinct methods of TES (Temperature/Emissivity Separation Algorithm) and ARTEMISS (Automatic Retrieval of Temperature and emissivity using Spectral Smoothness) from the HyTES thermal hyperspectral images. The HyTES (Hyperspectral Thermal Emission Spectrometer) is an airborne thermal hyperspectral sensor with 256 spectral channels within the range of 7.5 and 12 micrometers in the range of thermal infrared of the electromagnetic spectrum designed by NASA.
The scope of this study was to retrieve land surface temperature, emissivity and atmospheric parameters from the HyTES sensor in two different methods: ARTEMISS and TES. We used the ISAC method that estimates the transmission and upwelling radiance of the atmosphere. In ISAC method, it is necessary to fit a straightforward line to optimize upper boundary of data. We used the smoothness of the spectral emissivity in the ARTEMISS algorithm in order to retrieve temperature and emissivity. Atmospheric parameters that were obtained from ISAC were used in ARTEMISS and TES. In the next step, the TES algorithm was applied to derive surface emissivity and LST. This method is designed to reduce systematic errors in LST and LSE and also to limit errors in the amplitude and shape of emissivity spectra. This algorithm first estimates the normalized emissivity and then, calculates emissivity band ratios. Next, anempirical relationship predicts the minimum emissivity from the spectral contrast (MMD) of the normalized values, permits recovery of the emissivity spectrum with improved accuracy by using an empirical relationship between emissivity contrast and minimum emissivity, the nondeterministic problem of TES was solved. The basic problemof TES is, as indicated by Realmuto 1990 that we obtain  spectral measurements of radiance and need to find unknowns ( emissivities and one temperature). This is a nondeterministic problem, so at least one additional constraint must be considered. Several methods have been developed to resolve these problems such as Normalized Emissivity Method (NEM), RATIO and Minimum-Maximum emissivity Difference (MMD). In the NEM module of TES, we guessed preliminary values of temperature and LSE assuming a value for the maximum local emissivity (for blackbodies). Then, in RATIO module, we estimated emissivity normalized spectrum (). In order to scale the  spectrum to actual emissivity values, we used the MMD module of TES. After applying NEM, RATION and MMD module, TES estimates and reports pixel-by-pixel precisions for LST and LSE. Finally, we compared the results of LST and LSEs derived from these algorithms with products of HyTES. The results shown in this study prove the feasibility of retrieving accurate estimates of atmospheric parameters, surface temperature and emissivity with HyTESdata.It should be noted that the noise and water vapor absorption bands of HyTEShyperspectral image were removed, therefore, 202 optimal bands were selected. Then, TES algorithm consists of modules NEM, MMD and RATIO was applied. ARTEMISS method is based on (1) in-scene atmospheric transmission estimation, (2) matching of the transmission to a database and (3) retrieving a spectrally smooth emissivity by an iterative method used on hyperspectral data. The ARTEMISS algorithm was applied. The final outputs of these two algorithms include thermal and emissivity images. In order to evaluate these two methods and quality assessment, we used the satellite products that have been prepared by NASA. The results of the quality assessment show that temperature RMSE for TES and ARTEMISS methods are 0.6 and 1.2 kelvin respectively, and also emissivity RMSE for band 171 are 0.01 and 0.02 respectively. Therefore, TES algorithm is a more accurate method than ARTEMISS which was implemented for the first time on this type of data.The obtained results show that the thermal hyperspectral data are suitable for accurate retrieval of emissivity and land surface temperature in any kind of land cover.

کلیدواژه‌ها [English]

  • LST
  • Emissivity
  • TES
  • ARTEMISS
  • HyTES
  • Thermal Hyperspectral Scanner
1- امینی بازیانی, زارع ابیانه واکبری؛سمیرا،حمیدومهدی،(1393) برآورد دما و شاخص پوشش گیاهی سطح زمین با استفاده از داد ه های سنجش از دور (مطالعه موردی: استان همدان) پژوهش های جغرافیای طبیعی 46:333-348
2- فیضی زاده, دیده بان وغلام نیا؛ بختیار، خلیل و خلیل، (1394) برآورد دمای سطح زمین با استفاده از تصاویر ماهواره لندست 8 و الگوریتم پنجره مجزا (مطالعه موردی: حوضه آبریز مهاباد) فصلنامه علمی-پژوهشی اطلاعات جغرافیایی«سپهر» 25:171-181
3- مقدم ج،آخوندزاده و سراجیان؛ یاسر، مهدی و محمدرضا، (1395) ارائه یک الگوریتم پنجره مجزا نوین به منظور تخمین دمای سطح زمین از داد ههای ماهواره لندست-8 نشریه علمی پژوهشی علوم و فنون نقشه‌برداری 5:215-226
4- AndingD,Kauth R (1970) Estimation of sea surface temperature from space Remote Sensing of Environment 1:217-220
5- Borel CC Artemiss-an algorithm to retrieve temperature and emissivity from hyper-spectral thermal image data. In: Borel CC (ed) 28th Annual GOMACTech Conference, 2003.
6- Chatterjee R, Singh N, Thapa S, Sharma D,Kumar D (2017) Retrieval of land surface temperature (LST) from landsat TM6 and TIRS data by single channel radiative transfer algorithm using satellite and ground-based inputs International Journal of Applied Earth Observation and Geoinformation 58:264-277
7- Chen F, Yang S, Su Z,Wang K (2016) Effect of emissivity uncertainty on surface temperature retrieval over urban areas: Investigations based on spectral libraries ISPRS Journal of Photogrammetry and Remote Sensing 114:53-65
8- Gagnon M-A, Tremblay P, Savary S, Farley V, LagueuxP,Chamberland M Airborne thermal hyperspectral imaging of urban and rural areas. In: Geoscience and Remote Sensing Symposium (IGARSS), 2014 IEEE International, 2014. IEEE, pp 1369-1372
9- Gao C, Jiang X, Qian Y, Qiu S, Ma L,Li Z-l A neural network based method for land surface temperature retrieval from AMSR-E passive microwave data. In: Geoscience and Remote Sensing Symposium (IGARSS), 2013 IEEE International, 2013. IEEE, pp 469-472
10- Gillespie A, Rokugawa S, Matsunaga T, Cothern JS, Hook S,Kahle AB (1998) A temperature and emissivity separation algorithm for Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) images IEEE transactions on geoscience and remote sensing 36:1113-1126
11- Gillespie AR, Rokugawa S, Hook SJ, MatsunagaT,Kahle AB (1999) Temperature/emissivity separation algorithm theoretical basis document, version 2.4 ATBD contract NAS5-31372, NASA
12- Guanter L, Richter R,Moreno J (2006) Spectral calibration of hyperspectral imagery using atmospheric absorption features Applied Optics 45:2360-2370
13- Hu T, Liu Q, Du Y, Li H, Wang H,Cao B (2015) Analysis of the land surface temperature scaling problem: A case study of airborne and satellite data over the Heihe Basin Remote Sensing 7:6489-6509
14- Jacob F et al. (2017) Reassessment of the temperature-emissivity separation from multispectral thermal infrared data: Introducing the impact of vegetation canopy by simulating the cavity effect with the SAIL-Thermique model Remote Sensing of Environment 198:160-172
15- LabbiA,Mokhnache A (2015) Derivation of split-window algorithm to retrieve land surface temperature from MSG-1 thermal infrared data European Journal of Remote Sensing 48:719-742
16- Li Z-L, Becker F, Stoll M,Wan Z (1999) Evaluation of six methods for extracting relative emissivity spectra from thermal infrared images Remote sensing of Environment 69:197-214
17- Li Z-L et al. (2013) Land surface emissivity retrieval from satellite data International Journal ofRemote Sensing 34:3084-3127
18- Oltra-Carrió R, Cubero-Castan M, BriottetX,Sobrino JA (2014) Analysis of the performance of the TES algorithm over urban areas IEEE Transactions on Geoscience and Remote Sensing 52:6989-6998
19- PayanV,Royer A (2004) Analysis ofTemperature Emissivity Separation (TES) algorithm applicability and sensitivity International Journal of Remote Sensing 25:15-37
20- Peres LF,DaCamara CC (2005) Emissivity maps to retrieve land-surface temperature from MSG/SEVIRI IEEE Transactions on Geoscience and Remote Sensing 43:1834-1844
21- Price JC (1983) Estimating surface temperatures from satellite thermal infrared data—A simple formulation for the atmospheric effect Remote Sensing of Environment 13:353-361
22- Rozenstein O, Qin Z, DerimianY,Karnieli A (2014) Derivation of land surface temperature for Landsat-8 TIRS using a split window algorithm Sensors 14:5768-5780
23- Schlerf M, Rock G, Lagueux P, Ronellenfitsch F, Gerhards M, Hoffmann L,Udelhoven T (2012) A hyperspectral thermal infrared imaging instrument for natural resources applications Remote Sensing 4:3995-4009
24- Wang N, Li Z-L, Tang B-H, ZengF,Li C (2013) Retrieval of atmospheric and land surface parameters from satellite-based thermal infrared hyperspectral data using a neural network technique International journal of remote sensing 34:3485-3502
25- Wang X, OuYang X, Tang B, Li Z-L,Zhang R A new method for temperature/emissivity separation from hyperspectral thermal infrared data. In: Geoscience and Remote Sensing Symposium, 2008. IGARSS 2008.IEEE International, 2008. IEEE, pp III-286-III-289
26-Young SJ, Johnson BR,Hackwell JA (2002) An in-scene method for atmospheric compensation of thermal hyperspectral data Journal of Geophysical Research: Atmospheres 107