ارزیابی توابع نگاشت با استفاده از ردیابی اشعه سه بعدی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 کارشناس ارشد ژئودزی، گروه مهندسی نقشه برداری، دانشکده عمران و حمل و نقل، دانشگاه اصفهان

2 استادیارگروه مهندسی نقشه برداری- دانشکده عمران و حمل و نقل- دانشگاه اصفهان

3 دانشیار، گروه مهندسی نقشه برداری، دانشکده عمران و حمل و نقل، دانشگاه اصفهان

10.22131/sepehr.2019.34612

چکیده

تروپوسفر لایهای از اتمسفر است که از گازهای خشک و بخار آب تشکیل شده است که باعث تأخیر در زمان انتشار امواج الکترومغناطیس و در نتیجه خطا در تعیین موقعیت دقیق میشود. این تأثیر به طور خاص برای تکنیکهای ژئودزی فضایی بسیار بحرانی تلقی میشود. برای مدل سازی این خطا روشهای مختلفی پیشنهاد شده است که از جمله مطرحترین آنها میتوان به روشهای ردیابی اشعه سه بعدی و استفاده از توابع نگاشت اشاره کرد. ردیابی اشعه سه بعدی، روشی مستقیم برای این برآورد تلقی میشود. در این مقاله مقایسههایی بین این روش و روش استفاده از توابع نگاشت که بطور معمول مورد استفاده قرار میگیرند، انجام شده است.         
براساس این تحقیق مشخص میشود که در شرایط مختلف و برای رسیدن به دقتهای مورد نظر از کدام روش استفاده شود و اولویت با کدام روش است. در این مقایسه از توابع نگاشت  VMF وGMF استفاده شده است که در تکنیکهای ژئودزی فضایی بسیار مورد استفاده قرار میگیرند. برای این منظور دادههای سال 2008 و 2011 ایستگاههای VLBI مورد استفاده قرار گرفته است. نتایج این مطالعه نشان میدهد که ایستگاهی که بیشترین رطوبت را دارد (KOKEE) در همه بازههای دقت، نیاز به ردیابی اشعه دارد و از توابع نگاشت نمیتوان استفاده کرد. همچنین برای رسیدن به دقت کمتر از 10 میلیمتر در ارتفاع ایستگاه بایستی تقریباً در تمام زوایای ارتفاعی ردیابی اشعه استفاده شود و یا برای رسیدن به دقت کمتر از 20 میلیمتر در ارتفاع ایستگاه بایستی تقریباً در زوایای ارتفاعی 0 الی 35 درجه ردیابی اشعه استفاده شود، و برای بقیه زوایا میتوان از توابع نگاشت استفاده کرد.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of different mapping functions using 3-D Ray tracing

نویسندگان [English]

  • Hamid Akbari 1
  • Vahab Nafisi 2
  • Jamal Asgari 3
1 M.Sc. in Geodesy
2 Department of Geomatics Engineering- Faculty of Civil engineering and Transportation- University of Isfahan
3 Associate professor- Department of geomatics engineering- Faculty of civil engineering and transportation- University of Isfahan
چکیده [English]

 
Extended Abstract
The troposphere is a layer of atmosphere that consists of dry gases and water vapor, which causes a time delay in the emission of electromagnetic waves resulting in an error in determining the precise position. In space geodesy, normally, the travelling time of the wave between an emission source in space (a satellite for GNSS or a quasar in VLBI) and a receiver located in a geodetic station on the surface of the Earth is measured. This time is then converted to distance by the speed of light in vacuum. There are two ways to manage the atmospheric delays in space geodetic data analysis; either, external measurements of the atmospheric delays are used to correct the measurements or, the atmospheric delays are estimated in a least square adjustment as the unknowns. To model this error using the first strategy, several methods have been proposed, among which, the most prominent ones are the three dimensional (3-D) ray tracing and the use of mapping functions. 3D ray tracing is considered to be a direct method for this estimation and the actual path of the wave which is curved, is estimated by using Eikonal equation and is compared with the theoretical straight path. It means we can find the amount of correction which should be considered. Contrary to this method, the use of mapping functions is considered as indirect method and by using proper functions, the amount of delay (hydrostatic and non-hydrostatic) in the vertical direction is plotted in the desired direction. The basic assumption in this method is to take the azimuth symmetry for the troposphere into considerations and therefore, the amount of delay will depend only on the elevation angle. In this paper, comparisons have been made between this method and the method of using mapping functions that are commonly used.
Based on this research, it is determined which method to be used in different conditions to achieve the desired accuracy for space geodesy techniques such as GNSS and VLBI, and which method is the priority. In this comparison, VMF (Vienna Mapping Function) and GMF (Global Mapping Function) which are used widely in space geodetic techniques were used. Coefficients in these mapping functions are obtained based on Numerical Weather Models (NWMs) and specially ECMWF. VMF is called Isobaric Mapping Function (IMF) based on the older mapping function, and GMF function has been created with changes in VMF, so that it can be used offline in some software including VieVs software. To this end, data from two observation campaigns managed by IVS (International VLBI Service) namedCONT08 and CONT11 have been used in the years 2008 and 2011 for VLBI stations. These two campaigns involve 15 days continuous observations. The results of this study show that the station with the highest humidity (KOKEE) requires ray tracing at all intervals of accuracy and mapping functions cannot be used to produce reasonable accuracy. Also, in order to achieve the accuracy of less than 10 mm in the station's elevation, it is necessary to use ray tracing at almost all angles of elevation, or in order to achieve the accuracy of less than 20 mm, it should be used at the angles of elevation of approximately 0 to 35 degrees, and mapping functions can be used for the rest of the angles of elevation.
Based on the diagrams and tables presented in this paper, the following results can also be extracted:
-Use ray tracing method at the station with the highest humidity (KOKEE)
-Use ray tracing to achieve an accuracy of better than 10 mm for the stations’ elevation at all angles of elevation 
- Use ray tracing to achieve an accuracy of better than 20 mm for station’s elevation of approximately 0º to 35 º of the angles of elevation. Mapping functions can be used for the rest of the angles of elevation.
-Use ray tracing to achieve an accuracy of better than 30 mm for the station’s elevation of 0 to 26 degrees of the angles of elevation. Mapping functions can be used for the rest of elevation angles.
-At angles of elevation which do not require ray tracing, mapping functions are used. It can be said that in 2008, finally, GMF mapping function achieved a better accuracy than the VMF, while in 2011, the performance of VMF mapping function was better than that of GMF.

کلیدواژه‌ها [English]

  • Ray tracing
  • Refractivity
  • Numerical weather models
  • Mapping functions
  • Atmospheric modeling

1- Alkhalifah, T., and S. Fomel (2001), Implementing the fast marching Eikonal solver: Spherical versus Cartesian coordinates, Geophys. Prospect., 49,165–178, doi:10.1046/j.1365-2478.2001.00245.x

2-  Böhm, J., B. Werl, and H. Schuh (2006a), Tropospheric mapping function for GPS and very long baseline interferometry from European Center for Medium-range Weather Forecasts operational analysis data, J. Geophys. Res., 111, B02406, doi:10.1029/2005JB003629.

3- Böhm, J., and H. Schuh (2003), Vienna mapping functions, in Proceedings ofthe 16th Working Meeting on European VLBI for Geodesy and Astrometry, pp. 131–143, Verlag des Bundesamtes für Kartogr. und Geod., Frankfurt, Germany

4- Born ,M. and Wolf ,E., Principles of Optics, 7th ed. New York: Cambridge Univ. Press, 1999, p. 952.

5- Cerveny ,V., Seismic Ray Theory. New York: Cambridge Univ. Press, 2005, p. 713.

6- Cerveny, V., L. Klimes, and I. Psencik (1988), Complete seismic-ray tracing in three-dimensional structures, in Seismological Algorithms, edited by D. J. Doornbos, pp. 89–168, Academic, San Diego, Calif.

7- COESA, U.S. Standard Atmosphere, 1976, U.S. Government Printing Of- fice NOAA-S/T 76-1562, U.S. Committee Extension Standard Atmosphere (COESA), Nat. Ocean. Atmos. Admin., Nat. Aeronautics Space Admin., U.S. Air Force, Washington, DC, p. 227, Oct. 1976. [Online]

8-Davis ,J. L., T. A. Herring, I. I. Shapiro, A. E. E. Rogers, and G. Elgered, “Geodesy by radio interferometry: Effects of atmospheric modeling errors on estimates of baseline length,” Radio Sci., vol. 20, no. 6, pp. 1593–1607, 1985.

9- Fleisch, D. (2010), A Student’s Guide to Maxwell’s Equations, 134 pp., Cambridge Univ. Press, Cambridge, U. K.

10- Haselgrove ,J., “Ray theory and a new method of ray tracing, physics in the ionosphere,” in Proc. Phys. Soc., London, U.K., 1955, pp. 355–364.

11- Hobiger, T., S. Shimada, S. Shimizu, R. Ichikawa, Y. Koyama, and T.Kondo (2010), Improving GPS positioning estimates during extreme weather situations by the help of fine-mesh numerical weather models, J. Atmos. Sol. Terr. Phys.

12- Hobiger ,T., Ichikawa , R., Koyama, Y., and Kondo ,T., “Fast and accurate ray-tracing algorithms for real-time space geodetic applications using numerical weather models,” J. Geophys. Res., vol. 113, p. D20302, 2008, DOI: 10.1029/2008JD010503.

13- Hobiger ,T., Ichikawa , R., Koyama, Y., and Kondo ,T., “Computation of troposphere slant delays on a GPU,” IEEE Trans. Geosci. Re- mote Sens., vol. 47, no. 10, pp. 3313–3318, Oct. 2009, DOI: 10.1109/ TGRS.2009.2022168.

14- Hobiger ,T., Ichikawa , R., Koyama, Y., and Kondo ,T, “Fast and accurate ray-tracing algorithms for real-time space geodetic applications using numerical weather models,” J. Geophys. Res., vol. 113, p. D20302, 2008, DOI: 10.1029/2008JD010503.

15- Haselgrove ,J., “Ray theory and a new method of ray tracing, physics in the ionosphere,” in Proc. Phys. Soc., London, U.K., 1955, pp. 355–364.

16- Kleijer, F. (2004), Tropospheric modeling and filtering for precise GPS leveling, PhD thesis, 262 pp., TU Delft, Delft, Netherlands. [Available a http://enterprise.lr.tudelft.nl/publications/files/ae_kleijer_20040413.pdf].

17- Kravtsov, Y. A., and Y. I. Orlov (1990), Geometrical Optics of Inhomogeneous Media, Springer, Berlin.

18- Kravtsov ,Y. A., Geometrical Optics in Engineering Physics. Harrow, U.K.: Alpha Science, 2005, p. 355.

19- MacMillan, D. S., and C. Ma (1994), Evaluation of very long baseline interferometry atmospheric modeling improvements, J. Geophys. Res.

20- Mendes,V. B., “Modeling the neutral-atmosphere propagation delay in radiometric space techniques,” Ph.D. dissertation, Dept. Geodesy Geo- matics Eng., Univ. New Brunswick, Fredericton, NB, Canada, 1999, Tech. Rep. 199, pp. 349.

21- Nafisi, V., M. Madzak, J. Böhm, A. A. Ardalan, and H. Schuh (2012), Ray-traced tropospheric delays in VLB analysis, Radio Sci., 47, RS2020, doi:10.1029/2011RS004918.

22- Niell, A. E., A. J. Coster, F. S. Solheim, V. B. Mendes, P. C. Toor, R. B. Langley, and C. A. Upham (2001), Comparison of measurements of atmospheric wet delay by radiosonde, water vapor radiometer, GPS, and VLBI, J. Atmos. Oceanic Technol., 18, 830– 850.

23- Niell, A. E. (2000), “Improved atmospheric mapping functions for VLBI and GPS”, Earth Planets Space, 52, 699–702.

24- Niell AE (1996) Global mapping functions for the atmosphere delay at radio wavelengths. J Geophys Res 101:3227–3246. doi:10.1029/95JB03048

25- Nilsson, T. (2008), Measuring and modeling variations in the distribution of atmospheric water vapour using GPS, PhD thesis, Dep. of Radio and Space Sci., Chalmers Univ. of Technol., Gothenburg, Sweden.

26- Nievinski ,F. G., “Ray-tracing options to mitigate the neutral atmo- sphere delay in GPS,” M.Sc.E. thesis, Dept. Geodesy Geomatics Eng., Univ. New Brunswick, Fredericton, NB, Canada, 2009, Tech. Rep. 262, pp. 232.

27- Pany ,T. K., “Development and application of tropospheric GPS slant delay models based on numerical weather prediction models and turbulence theory,” Ph.D. dissertation, Inst. Eng. Geodesy Meas. Syst., Graz Univ. Technol., Graz, Austria, 2002, pp. 190.

28- Rocken ,C., Sokolovskiy ,S., J. Johnson ,M., and Hunt ,D., “Improved map- ping of tropospheric delays,” J. Atmos. Ocean. Technol., vol. 18, no. 7, pp. 1205–1213, Jul. 2001.

29- Saastamoinen ,J., “Atmospheric correction for the troposphere and trato- sphere in radio ranging of satellites,” in The Use of Artificial Satellites for Geodesy, vol. 15, Geophysical Monograph Series,S.W.Henriksen, A. Mancini, and B. H. Chovitz, Eds. Washington, DC: AGU, 1972, pp. 247–251.

30- Smith and S ,E. K.. Weintraub, “The constants in the equation for atmo- spheric refractive index at radio frequencies,” J. Res. Natl. Bur. Stand., vol. 50, pp. 39–41, 1953.

31- Thayer, G. (1974), An improved equation for the refractive index of air, Radio Sci., 9(10), 803–807, doi:10.1029/RS009i010p00803.

32- Thayer, G. D. (1967), A rapid and accurate ray tracing algorithm for a horizontally stratified atmosphere, Radio Sci., 1(2), 249–252.

33- Urquhart, L. (2011), Assessment of tropospheric slant factor models: Comparison with three dimensional ray-tracing and impact on geodetic positioning, MScE thesis, 190 pp., Dep. of Geod. and Geomatics Eng.,Univ. of N. B., Fredericton, N. B., Canada. [Available at http://gge.unb.ca/Pubs/TR275.pdf].

34- Wallace, J. M., and P. V. Hobbs (2006), Atmospheric Science: An Introductory Survey, 2nd ed., 483 pp., Academic, San Diego, Calif.

35- Wheelon,A. D., Electromagnetic Scintillation: Geometrical Optics. New York: Cambridge Univ. Press, 2001, p. 455.

36- Wheelon, A. D. (2001), Electromagnetic Scintillation, vol. 1, Geometrical Optics, 455 pp., Cambridge Univ. Press, Cambridge, U. K.

37- Wijaya, D. D. (2010), Atmospheric correction formulae for space geodetic techniques, PhD thesis, 163 pp., Inst. of Eng., Geod. and Measur. Syst.,Graz Univ. of Technol., Graz, Austria.