نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری فتوگرامتری، دانشکده مهندسی نقشه برداری و اطلاعات مکانی، دانشگاه تهران

2 کارشناس ارشد فتوگرامتری، دانشکده مهندسی ژئوماتیک و ژئودزی، دانشگاه صنعتی خواجه نصیرالدین طوسی

3 دانشجوی دکتری فتوگرامتری و سنجش از دور، دانشکده مهندسی ژئوماتیک و ژئودزی، دانشگاه صنعتی خواجه نصیرالدین طوسی

چکیده

امروزه با پیشرفت تکنولوژی و اهمیت بحث تولید مدل ارتفاعی رقومی زمین از تمام نقاط کشور، میتوان به لزوم استفاده هرچه بیشتر از سنجش از دور ماهوارهای پی برد. یکی از ارکان اصلی سنجش از دور ماهوارهای، سنجش از دور راداری میباشد. در سالهای اخیر پروژههای فضایی بسیاری، اخذ اطلاعات از سطح کره زمین را آغاز کردهاند که آخرین آنها پروژه سنتینل میباشد. سنتینل-1 بخش راداری پروژه سنتینل است که با دوره زمانی 12 روز از سطح زمین تصاویر با توان تفکیک مکانی متوسط اخذ میکند. در این مقاله دقت و قابلیت تولید مدل ارتفاعی رقومی زمین با استفاده از این تصاویر مورد بررسی قرار میگیرد. تصاویر مورد استفاده در پژوهش حاضر، از شهر تهران و حومه آن میباشد. جهت انجام آزمایشها هم از بخش کوهستانی (شمال تهران) و هم بخش هموار (جنوب تهران) استفاده شده است. تکنیک تولید مدل ارتفاعی رقومی، روش تداخل سنجی راداری با دو عبور تکراری میباشد. مدل ارتفاعی رقومی تولید شده با استفاده از تصاویر سنتینل-1 و تکنیک تداخل سنجی راداری با مدل ارتفاعی رقومی مرجع با دقت یک متر مورد ارزیابی قرار میگیرد. نتایج تحقیق نشان میدهند که در منطقه هموار، دقت ارتفاعی (انحراف معیار) مدل ارتفاعی رقومی 26/1 متر و دقت ارتفاعی در منطقه کوهستانی 32/10 متر میباشد. با در نظر گرفتن این نکته که میتوان با استفاده از تصاویر سنتنل-1 که تصاویری با توان تفکیک مکانی متوسط محسوب میشوند به دقت نسبتاً مناسبی خصوصاً در مناطق غیر کوهستانی سخت دست یافت، لزوم مطالعه عمیقتر و استفاده بیشتر از این تصاویر بر محققان مشخص میشود.

کلیدواژه‌ها

عنوان مقاله [English]

Generating Digital Elevation Model of the Earth Using Sentinel-1 Images and Interferometry

نویسندگان [English]

  • mohammad amin ghannadi 1
  • Hamid Enayati 2
  • Elaheh Khesali 3

1 Ph.D. Candidate student in photogrammetry, the School of Surveying and Geospatial Engineering, Collage of Engineering, University of Tehran

2 MSc Degree in photogrammetry and remote sensing,the Faculty of Geodesy and Geomatics Engineering, Khajeh Nasir Toosi University

3 Ph.D. Candidate in photogrammetry and remote sensing,the Faculty of Geodesy and Geomatics Engineering, Khajeh Nasir Toosi University

چکیده [English]

Extended Abstract
Introduction
A Digital Elevation Model or DEM is a physical representation of terrain and topography that is modeled by a digital 3D model. DEMs have various applications in many fields. Today, with respect to improvements in technology and importance of generating DEM from every region in our country, the importance of satellite remote sensing is more sensible.  One of the main topics in satellite remote sensing is radar remote sensing. In recent years, a number of satellites have been launched to capture SAR information from the surface of the Earth. The last project is Sentinel, and Sentinel-1generates SAR data. It generates images with medium spatial resolution from the Earth every 12 days. DEMs are generated through multiple methods, one of which is SAR interferometry.
 
Material and Methods
The area under study in this research for conducting experiments and generating the DEM is Iran and the city of Tehran. Tehran is located in the north of the country and south of the Alborz Mountains, 112 kilometers south of the Caspian Sea. Its elevation ranges from 2000 meters in the highest points of the north to1200 meters in the center and 1050 meters in the south. In this paper, the Sentinel-1 stereo images are used to generate DEM. Tehran is located on part of these images. These images are shown in Figure (1). In order to evaluate the digital model generated by these images, a reference digital model which has been prepared from the city of Tehran with an accuracy of 1 meter is used. This elevation data was collected using terrestrial surveying and aerial photogrammetry. In this paper, radar interferometry was used to generate digital elevation model from the Sentinel-1 images. In SAR interferometry, the phase of images taken from various imaging positions or various imaging times is compared pixel by pixel. The new image is produced by differentiating between these values which is called interferogram. Interferogram is a Fringe interference pattern. Fringes are lines with the equal phase differences similar to contours in topographic maps. The phase difference obtained from SAR interferometry is affected by several components. Some of the most important components are orbital paths, topographic, displacement and atmospheric components. By eliminating the major part of the orbital component (and calculating the effect of other components or assuming their insignificance effects comparing with orbital and topographic components), since the topographic radar observes the Earth from two different points, the stereoscopic effect is revealed. This topographic component leads to fringes which encompasses the topography like contours. These patterns are called topographic fringes.
 
Results and Discussion
In order to conduct the experiments considered in this paper, two mountainous and flat areas in Tehran are picked out and separated from the main image. The mountainous area is selected from the north and the flat one from the south of Tehran. The aforementioned technique is implemented and executed on these images. The generated DEM in these two areas is shown in Figure (2). After generating the Earth DEM using the Sentinel-1 images, and comparing it with the reference DEM having an elevation accuracy of 1 meter, the accuracy of the generated DEM was determined. As expected, the results in the flat area were more desirable compared to the mountainous area. The accuracy of the generated DEM was evaluated by creating a network with the dimensions of 138761 points from the flat area and a network with the dimensions of 78196 points from the mountainous area, from both generated and reference DEMs and comparing the corresponding elevations of the network points. Digital numbers of images represent the magnitude of error occurring in the generation of DEM. After testing the 3 error (blunder detection) and eliminating large errors occurred in DEM, a standard deviation error of 1.26 meters for the flat area (South of Tehran), and 10.32 meters for the mountainous area (North of Tehran) were obtained.
 
Conclusion
Considering the development of technology and the launch of new satellite imagery projects from the Earth and the importance of the existence of a digital elevation model from the country, it is possible to recognize the importance of studying these images more and more. One of the latest satellite remote sensing projects is the Sentinel project. The Sentinel-1 radar images with medium spatial resolution capabilities provide the possibility of generating a Digital Elevation Model (DEM) from the country.  This research is the first study on the accuracy of Digital Elevation Model resulted from the Sentinel-1 radar images in Iran. An elevation accuracy of 10.32 meters in the mountainous area, and 1.26 meters in the flat area were obtained. The results show that these satellite images have the capability of generating a relatively optimal DEM, particularly in non-mountainous area.

کلیدواژه‌ها [English]

  • Digital Elevation Model (DEM)
  • SAR interferometry
  • Sentinel-1 images
  • Satellite remote sensing
1- قنادی، م.، (1392)، ارزیابی روش‌های تناظریابی تصویری در تصاویرماهواره‌‌ای راداری، پایان نامه کارشناسی ارشد، دانشکده مهندسی نقشه‌برداری و اطلاعات مکانی، دانشگاه تهران.
2- قنادی، م.، افتخاری، ا.، سعادت سرشت، م.، (1393)، استخراج اطلاعات ارتفاعی زمین با استفاده از مؤلفه دامنه تصاویر TerraSAR-X، شانزدهمین کنفرانس ژئوفیزیک ایران، صفحه 1-4.
3- واجدیان، س.، ( 1387)، پایش دگر شکلی پوسته با استفاده از تکنیک تداخل سنجی رادار با دریچه مصنوعی، پایان نامه کارشناسی ارشد، دانشکده مهندسی نقشه‌برداری و اطلاعات مکانی، دانشگاه تهران.
4- Eftekhari, A., Ghannadi, M. A., Motagh, M., &Seresht, M. S. (2013). 3D object coordinates extraction by radargrammetry and multi-step image matching. ISPRS-International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, 1, 147-151.
5- Ferretti, A., Prati, C., & Rocca, F. (2001). Permanent scatterers in SAR interferometry. IEEE Transactions on geoscience and remote sensing, 39(1), 8-20.
6- Goldstein, R. M., & Werner, C. L. (1998). Radar interferogram filtering for geophysical applications. Geophysical Research Letters, 25(21), 4035-4038.
7- Lazecky, M., Comut, F. C., Qin, Y., &Perissin, D. (2017). Sentinel-1 Interferometry System in the High-Performance Computing Environment. In The Rise of Big Spatial Data (pp. 131-139). Springer International Publishing.
8- Makineci, H. B., &Karabörk, H. (2016). EVALUATION DIGITAL ELEVATION MODEL GENERATED BY SYNTHETIC APERTURE RADAR DATA. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, 41.
9- Massonnet, D., & Feigl, K. L. (1998). Radar interferometry and its application to changes in the Earth’s surface. Reviews of geophysics, 36(4), 441-500.
10- Moreira, A., Krieger, G., Hajnsek, I., Hounam, D., Werner, M., Riegger, S., & Settelmeyer, E. (2004, September). TanDEM-X: a TerraSAR-X add-on satellite for single-pass SAR interferometry. In Geoscience and Remote Sensing Symposium, 2004. IGARSS’04. Proceedings. 2004 IEEE International (Vol. 2, pp. 1000-1003). IEEE.
11- Nitti, D. O., Bovenga, F., Nutricato, R., Intini, F., &Chiaradia, M. T. (2013). On the use of COSMO/SkyMed data and Weather Models for interferometric DEM generation. European Journal of Remote Sensing, 46(1), 250-271.
12- Pitz, W., & Miller, D. (2010). The TerraSAR-X satellite. IEEE Transactions on Geoscience and Remote Sensing, 48(2), 615-622.
13- Soja, M. J., &Ulander, L. M. (2013, July). Digital canopy model estimation from TanDEM-X interferometry using high-resolution lidar DEM. In Geoscience and Remote Sensing Symposium (IGARSS), 2013 IEEE International (pp. 165-168). IEEE.
14-www.Earth.esa.int/web/guest/missions/esa-operational-eo-missions/sentinel-1
15- Yagüe-Martínez, N., Prats-Iraola, P., González, F. R., Brcic, R., Shau, R., Geudtner, D&Bamler, R. (2016). Interferometric processing of Sentinel-1 TOPS data. IEEE Transactions on Geoscience and Remote Sensing, 54(4), 2220-2234.