مدل سازی سه بعدی و ارزیابی قابلیت دید رانندگان از تابلوهای راهنمای مسیر

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد سیستم های اطلاعات مکانی- دانشکده مهندسی نقشه برداری- دانشگاه صنعتی خواجه نصیرالدین طوسی

2 دانشیار دانشکده مهندسی نقشه برداری- دانشگاه صنعتی خواجه نصیرالدین طوسی

10.22131/sepehr.2019.37500

چکیده

علائم و تابلوها ضمن در اختیارگذاشتن اطلاعات و راهنماییهای مورد نیاز رانندگان، آنها را از مقررات حاکم بر مسیر و خطرات احتمالی پیش رو مطلع میکنند. جانمایی اصولی تابلوها در بزرگراهها و معابر شهری با در نظر گرفتن معیارهای دید، تأثیر بسزایی در یافتن به موقع مسیر و جلوگیری از سردرگمی رانندگان و در نتیجه کاهش ترافیک و تصادفات دارد. هدف این تحقیق، ارائه روشی مبتنی بر تحلیل مکانی در فضای سه بعدی، جهت ارزیابی قابلیت دید تابلوها است. ارتفاع و جهت قرارگیری تابلو، فاصله تابلو تا ناظر و زاویه افقی بین ناظر و تابلو و مساحت قابل درک از تابلو از جمله شاخصهایی هستند که بر قابلیت دید تابلوهای راهنمای مسیر تأثیرگذار میباشند. در روش ارائه شده موانع سهبعدی موجود در مسیر، تحت هندسهی پرسپکتیو به سطح تابلو، تصویر و مساحت قابل درک از تابلو توسط رانندگان در موقعیتهای مختلف محاسبه میشود. جهت ارزیابی قابلیت دید تابلو در موقعیتهای مختلف خودرو (راننده) در مسیر حرکت، شاخصهای مکانی از جمله مساحت محدوده مشترک  حاصل از تصویر موانع با سطح تابلو، فاصله بین مرکز تابلو و مرکزمنطقهی مشترک و ترکیب مساحت با فاصله ارائه گردیده است. سپس ضمن طراحی سناریوهای مختلف حرکت خودرو در یک مسیر شبیه سازی شده و ارزیابی عملکرد هر یک از شاخصهای مذکور، شاخص ترکیب مساحت با فاصله به عنوان شاخص دید انتخاب و وضعیت دید خودرو (راننده) در چهار کلاس ضعیف، خوب، متوسط و عالی، سنجیده میشود.نتایج تحقیق نشان میدهد، روش ارائه شده میتواند به عنوان یک ابزار مناسب در جانمایی بهینه تابلوهای راهنمای مسیر به کارگرفته شود.

کلیدواژه‌ها


عنوان مقاله [English]

3 Dimensional modeling and visibility estimation of road signs from drivers’ perspective

نویسندگان [English]

  • Sara Karami 1
  • Mohammad Taleai 2
1 M.S.C. student of GIS, Faculty of geomatics, GIS department, K.N.Toosi University of Technology
2 Associate professor, Faculty of geomatics, GIS department, K.N.Toosi University of Technology
چکیده [English]

Extended Abstract
Introduction
 Road signs not only provide drivers with the necessary information and guidance, but also inform them of related rules and probable risks along roads. Safety of roads, and thus minimum delay and discomfort for drivers depends on traffic order. This order is only achieved if road signs can accurately guide drivers. Design of road signs have been evaluated in different fields of traffic engineering and urban design. Based on these evaluations, parameters like proper distance (distance in which a sign is legible for those driving in different speeds), and proper height (the height in which light reflection from the surface of the sign is minimized) have been introduced. Lack of a generalized method for designing and positioning of road signs, along with inadequate attention to their proper installation can cause a serious risk for drivers.
Systematic positioning of road signs on highways and urban pathways with an especial attention to different criteria of sights has a significant impact on drivers’ ability to find the best route on time, and thus minimizes probable confusion and heavy traffic. Visibility in three-dimensional space refers to three-dimensional characteristic of different barriers along the roads. In most analytical studies, extruded objects and a perspective of the three-dimensional model are simulated. In this approach, three-dimensional analysis is usually performed based on an analysis in two-dimensional space. As an instance, the concept of spatial openness index (SOI) was introduced in 3D space. This concept refers to the volume of space observable for an observer. SOI is measured by defining a cone in the observers’ position based on which simulation is performed. In this way, the volume of observable space will be reduced in the presence of obstacles.
3D visibility analysis is closely related to human perception. When human eyes observe a scene, distant objects appear smaller than closer ones. Thus, if this difference in distance is considered, the final simulation will be closer to reality. Distance index shows the space width scale by calculating the distance between the observer and the target. In this method, a decrease in distance results in a more comprehensive perception, while increased distance decreases observers’ ability to perceive the environment. Based on the distance to target and observer’s view angle, three-dimensional projection simulates observers’ view and illustrates 3D obstacles on a 2D plane. The present study seeks to provide an approach based on spatial analysis in 3D space to evaluate the visibility of road signs.
 
Materials & Methods
Indices like height and direction of road signs, perceivable distance and horizontal angle between signs and the observer (driver), and finally perceivable area of the signs effect the visibility of signs. In the proposed method, total area of each sign perceivable for drivers driving in different situations is calculated using projective geometry.
In order to evaluate visibility of road signs for vehicles (driver) in different positions, spatial indices such as overlap area (area resulted from the reflection of barriers on the sign face), distance between the center of road signs and the center of overlap area, and a combination of overlap area and distance are presented. Then, different simulation scenarios are designed for the vehicle’s motion on a simulated roadway and the performance of each indicator are evaluated. Index of combination (combination of overlap area and distance) was selected as final visibility measure. With an increase in distance from the center of the sign, the overlap area decreases and visibility increases. In order to determine visibility, visual status of the vehicle (driver) is evaluated based on four categories: poor, good, medium and excellent.
 
Results & Discussion
In order to simulate drivers’ vision, model spatial objects along the route and find optimal position for road signs, an appropriate analytical model is required. Results indicate that the proposed method can be used as an appropriate tool for optimal positioning of road signs along a route.

کلیدواژه‌ها [English]

  • visibility
  • 3D modeling
  • Spatial analysis
  • Road signs

1-آیین نامه ایمنی راه‌­ها، نشریه شماره 3-267 (علائم ایمنی راه)، سازمان مدیریت و برنامه‌­ریزی کشور، وزارت راه و ترابری، 1384

2-پورمعلم، شریفی؛ ناصر ، یاسر؛ (1390)، «ارائه یک مدل نرم افزاری جهت وانمودسازی جانمایی و طراحی علائم، تابلوها و تجهیزات ایمنی راه، دهمین کنفرانس مهندسی حمل و نقل و ترافیک ایران، تهران»، سازمان حمل و نقل و ترافیک تهران، معاونت حمل و نقل و ترافیک شهرداری تهران.

3-Ameen Hamza Albahri, Amin Hammad, (2017). "A novel method for calculating camera coverage in buildings using BIM". Journal of Information Technology in Construction (ITcon), 22: 16-33

4-Bartie, P., F. Reitsma, S. Kingham and S. Mills (2010). "Advancing visibility modelling algorithms for urban environments." Computers, Environment and Urban Systems 34(6): 518-531.

5-Becker-Asano, C., F. Ruzzoli, C. Hölscher and B. Nebel, (2014). "A Multi-Agent System based on Unity 4 for Virtual Perception and Wayfinding." Transportation Research Procedia, 2: 452-455.

6-Benedikt, M., L. (1979). "To take hold of space: isovists and isovist fields".Environment and Planning B, 6.47–65.

7-Bin, Y., Z. Ji-biao and W. Lu (2013). "Effectiveness of Traffic Sign Setting in Adjacent Tunnel Exit." Procedia - Social and Behavioral Sciences 96: 5-11.

8-Felleman, J. (1979). "Landscape visibility mapping, theory and practice", School of Landscape Architecture,SUNY, College of Environmental Science and Forestry, (pp. 1-111).

9-Filippidis, L. (2006). "Representing the Influence of Signage on Evacuation Behavior within an Evacuation Model." Journal of Fire Protection Engineering 16(1): 37-73.

10-Fisher, P. F. (1994). "Probable and fuzzy models of the viewshed operation". In Worboys,  M. (Ed.), Innovations in GIS, London: Taylor & Francis, (pp. 161 – 175).

11-Fisher-Gewirtzman, D. & Wagner, I. A. (2006). "The ‘spatial openness index’: an automated model for 3D visual analysis of urban environments". Journal of Architecture and Planning Research, 23(1), 77–89.

12-Gewirtzman, D. & Wagner, I. A. (2006). "The ‘spatial openness index’: an automated model for 3D visual analysis of urban environments". Journal of Architecture and Planning Research, 23(1), 77–89.

13-Huan-Ting Chen, Si-Wei Wu and Shang-Hsien Hsieh, (2013)."Visualization of CCTV coverage in public building space using BIM technology". Visualization in Engineering, 1:5.

14-Ingrid Carlbom,Joseph Paciorek, (1978). "Planar Geometric Projections and Viewing Transformations." ACM Computing Surveys, 10 (4): 465–502.

15-ISA, Conspicuityand Readability, SIGNLINE, International Sign Association, )2007(, Retrieved from https://www.signs.org/Portals/0/docs/signline/signline_51. pdf (accessed on August 25, 2016).

16-Jarvis, R. A., (1973). "On the identification of the convex hull of a finite set of points in the plane". Information Processing Letters, 2(1): 18–21.

17-Kim, J. and K. Yu, (2015). "Areal Feature Matching Based on Similarity Using Critic Method." ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XL-2/W4: 75-78.

18-Motamedi, A., Z. Wang, N. Yabuki, T. Fukuda and T. Michikawa, (2017). "Signage visibility analysis and optimization system using BIM-enabled virtual reality (VR) environments." Advanced Engineering Informatics, 32: 248-262.

19-Nassar, K. and A. Al-Kaisy (2008). "Assessing sign occlusion in buildings using discrete event simulation." Automation in Construction 17(7): 799-808.

20-Or, D., & Shaked, A. (1995)."Visibility and dead-zones in digital terrain maps". Eurographics Association (14)3, 171-180.

21-O'Sullivan, D. & Turner, A. (2001). "Visibility graphs and landscape visibility analysis". International Journal ofGeographical Information Science, 15 (3), 221-237.           

22-Phil Bartie, Femke Reitsma, Simon Kingham and Steven Mills, (2010). "Advancing visibility modeling algorithms for urban environments." Computers, Environment and Urban Systems, 34: 518–531.

23-Shaw, L. S. (1993). Geography: "a place for GIS". Applied Geography, 13(2), 107-110.

24-SULEIMAN Wassim JOLIVEAUThiery,FAVIEREric(2012)."A New Algorithm for 3DIsovist ".JOLIVEAUT&FAVIERE.,2012.

25-Tandy, C. R. V. (1967). "The isovist method of landscape survey. In Murray H. C. (Ed.) Methods of Landscape Analysis", Landscape Research Group, London, (pp. 9–10).

26-Unity Technologies, (2012), Unity game engine. http://unity3d.com/unity.

27-Van Horn, J. E. & Mosurinjohn, N., A. (2010). "Urban 3D GIS modeling of terrorism sniper hazards". Social Science Computer Review, 28(4), 482–496.

28-Xie, H., L. Filippidis, S. Gwynne, E. R. Galea, D. Blackshields and P. J. Lawrence, (2007). "Signage Legibility Distances as a Function of Observation Angle." Journal of Fire Protection Engineering, 17(1): 41-64.

29-Yaagoubi, R., M. Yarmani, A. Kamel and W. Khemiri, (2015). "HybVOR: A Voronoi-Based 3D GIS Approach for Camera Surveillance Network Placement." ISPRS International Journal of Geo-Information, 4(2): 754-782.