تحلیل شرایط همدید چرخندهای حاره ای ساگار و میکونو در دریای عرب - سال 2018

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دکتری اقلیم شناسی، گروه جغرافیای طبیعی، دانشگاه سیستان و بلوچستان، زاهدان

2 استاد اقلیم شناسی،گروه جغرافیای طبیعی،دانشگاه سیستان و بلوچستان،زاهدان

3 دانشیار اقلیم شناسی،گروه جغرافیای طبیعی،دانشگاه تهران،تهران

10.22131/sepehr.2020.40473

چکیده

در بازه زمانی 27- 16 می سال 2018 دو چرخند حارهای بسیار قوی به نامهای ساگار[1] و میکونو[2]جنوب غرب و غرب دریای عرب را به شدت تحت تأثیر قرار دادند. در این تحقیق سعی شده تا نقش پارامترهای جوّی بزرگ مقیاس مؤثر در چرخندزایی، در مدت زمان فعالیت این دو توفان مورد واکاوی قرار گیرد. بنابراین آمار و اطلاعات مربوط به چرخندها از گزارش تهیه شده توسط اداره هواشناسی هند دریافت وپارامترهای جوّی- اقیانوسی مورد نیاز از دادههای دوباره آنالیز شده پایگاه ECMWF به صورت روزانه و با قدرت تفکیک مکانی 5/0 درجه طول و عرض جغرافیایی اخذ گردید. برای رسیدن به هدف تحقیق، مقادیر مؤلفههای دینامیکی و ترمودینامیکی و همچنین شاخص پتانسیل پیدایش[3] با استفاده از نرم افزارهای GRADS و MATLAB محاسبه شد و نقشههای مورد نظر ترسیم و مورد تحلیل قرار گرفت. نتایج نشان داد، مسیر حرکت توفانها انطباق کاملی با نواحی بیشینه نم نسبی و تاوایی مطلق دارد، توزیع فضایی متغیرهای جوّی دما، فشار سطح دریا وبرش عمودی باد نیز بیانگر این بود که مقادیر مطلوب این پارامترها،در نواحی تحت تأثیر چرخندها، در هر سه زمان شکلگیری، شدت و خاتمه آنها متمرکز گردیده ومقدار شاخص شدت پتانسیلی[4] به تبعیت از نواحی حداکثر دمای سطح دریا، تا 20 درجه عرض شمالی، به بیش از ۷۰ متر بر ثانیه رسیده است. بررسی تغییرات مکانی شاخص  GPI از چند روز قبل از وقوع چرخندها نیز نشان دهنده ارتباط قوی بین توزیع مکانی مقادیر شاخص با رخداد چرخندهای مورد مطالعه بود. بدین ترتیب تمام پارامترهای جوّی بزرگ مقیاس، مطلوبترین شرایط چرخندزایی را در نواحی تحت تأثیرتوفانها فراهم کرده بودندو در عرضهای شمالی دریای عرب و مخصوصاً دریای عمان پارامترهای یاد شده وضعیت مناسبی را نشان ندادند.از طرفی تحلیل نقشههای ناهنجاری حاکی از این بود،مؤلفههای دمای سطح دریاو رطوبت نسبی در محدوده تحت تأثیر چرخندها نسبت به میانگین بلند مدت افزایش و فشار سطح دریا و برش عمودی باد کاهش یافتهاندکه این مسئله بیانگر تشدید وضعیتهای چرخندزایی در این نواحی است.



[1]- Sugar


[2]- Mekunu


[3]- Genesis Potential Index (GPI)


[4]-potential intensity (PI)
 

کلیدواژه‌ها


عنوان مقاله [English]

Analyzing the synoptic conditions of Sagar and Mekunu tropical cyclones in the Arabian Sea in 2018

نویسندگان [English]

  • Faeze Shoja 1
  • Mahmood Khosravi 2
  • Ali Akbar Shamsipour 3
1 Ph.D. in Climatology, Department of physical geography, University of Sistan and Baluchestan
2 Professor in Climatology, Department of physical geography, University of Sistan and Baluchestan, Zahedan
3 Associate professor in climatology, Department of physical geography, University of Tehran, Teheran
چکیده [English]

Introduction
North Indian Ocean (NIO), which includes the Bay of Bengal(BoB) and the Arabian Sea (AS),is one of the tropical oceans and therefore, prone to the formation of the tropical cyclones (TC).  On a global scale, approximately 7% of the tropical cyclones are formed in this area. Studies indicate an increase in the frequency of remarkably powerful cyclonesin the Arabian Sea in recent years.In the period between May 16 and 27, 2018, two very strong cyclones called Sagar and Mekunu, affected southwestern and western regions of the Arabian Sea. The present study aims to determine the role of large-scale environmental parameters affecting the tropical cyclogenesis during the life period of these two storms.
 
Data and Methodology
The current study collects data, including the location of cyclones occurrence, tropical cyclone track, the minimum sea level pressure, and maximum wind speed from the report prepared by the India Meteorological Department. Requiredoceanic and atmospheric parameters, including U and V components of wind (at 200 and 850 hPa levels), relative humidity (at 600 hPa level), sea surface temperature (SST), sea level pressure (SLP), air temperature, pressure, and specific humidity at 23 levels of pressure (levels of 1, 2, 3, 5, 7, 10, 20, 30, 50, 70, 100, 150, 200, 250, 300, 400, 500, 600, 700, 775, 850, 925, 1000 hPa) were also extracted from the reanalyzed dataof ECMWF (European Centre for Medium-Range Weather Forecasts)on a daily basis and with the spatial resolution of 0.5°longitude and 0.5° latitude. In order to achieve the goal of the research, first, the values of large-scale environmental parametersplaying a crucial role in TC formation, including absolute vorticity (at 850 hPa level), vertical wind shear, potential intensity, and relative humidity, were calculatedusingGRADS and MATLAB. The related maps were also plotted and analyzed. Then, the genesis potential index of days before the storms occurrence wascalculated for different regions of the Arabian Sea, and the likely areas for cyclone occurrence were predicted based on the index. Finally, some anomaly maps were produced for the atmospheric parameters affecting cyclogenesis, and changes in these parameters were examined in the life period of the storms as compared to the normal climatological conditions.
 
 
Results and Discussion
Results indicated that the storms track coincided with the regions in which maximum relative humidity and maximum absolute vorticity occur.During cycloneSagar, relative humidity in areas affected by the cyclone reached over 80%. During the formation period ofcycloneMekunu,maximum relative humidity was observed in the area between 0°N to 10°N and 50°E to 80°E- the area dominated byMekunucyclone. Spatial distribution of environmental variables, such as temperature, sea level pressure, and vertical wind shear indicates that the favorable values of these parameters have been concentrated in the areas affected by the cyclones in all three phases of their formation, intensification, and dissipation.
Although, vertical wind shear did not considerably change in different parts of the Arabian Seaduring the life cycle of Sagar, its minimum levelwas reported in the Gulf of Aden. Similarly, with the increase in wind speed duringcyclone Mekunu on May 25, the minimum vertical wind shear moved to the northern latitudes and its value ranged from 6 to 12 m/s in the western Arabian Sea. The maximum absolute vorticity is observed in the Gulf of Aden during the life cycle of Sagarcyclone, and these conditions continue until cyclone’s dissipation. Also duringcycloneMekunu, maximum absolute vorticity was observed in the areas affected by thecyclone. Affected by the maximum sea surface temperature, potential intensity indexreached a value of more than 70 m/s in regions affected by the storms (20-degree north latitude). Spatial distribution of GPI values collected from the days before the cyclones occurrence indicated that there is a strong correlation between the spatial distribution of this index and the occurrence of cyclones. Furthermore, the storm track also coincided with the increase in this index,so that highest GPI values were concentrated in areas dominated by cyclones Sagar and Mekunu.Analysis of anomaly maps revealed that compared to the long-term average,sea surface temperature and relative humidity have increased in the area affected by tropical cyclones and sea level pressure and vertical wind shear have decreased.
 
Conclusion
Findings of the present research indicated that dynamic and thermodynamic parameters have provided the most favorable cyclogenesis conditions in the areas affected by the storms. In other words, the cyclone had moved to the direction in whichenvironmental parametersexhibited the best threshold levels. Therefore, it is possible to predict the occurrence of tropical cyclones in the northern latitudes of the Arabian Sea, especially in the Gulf of Oman,based on the changes in large-scale environmental parameters in different parts of the Arabian Sea.

کلیدواژه‌ها [English]

  • Anomaly
  • Dynamic and thermodynamic parameters
  • Genesis potential index
  • Tropical cyclogenesis
  • Arabian Sea and Gulf of Oman
1.   پگاه‌فر، غفاریان؛ نفیسه، پروین. (1395). بررسی فراسنج‌های هواشناختی در وردسپهر زیرین و زبرین در دوره عمر چرخند حاره‌ای هیان، نشریه اقیانوس‌شناسی، 7(26)، 67-55.

2.   خسروی، پودینه؛ محمود، محمدرضا. (1389). تحلیلی بر تأثیرات اقلیمی چرخند حاره‌ای گونو( خرداد 1386) بر جنوب شرق ایران، پژوهش‌های جغرافیای طبیعی، 42(72)، 72-53.

3.   شجاع، فائزه (1397). واکاوی شرایط پیدایش چرخند‌های حاره‌ای در دریای عرب و عمان تحت سناریوهای تغییر اقلیم، رساله دکتری، آب و هواشناسی، استاد راهنما: دکتر محمود خسروی، دانشکده جغرافیا و برنامه‌ریزی محیطی، دانشگاه سیستان و بلوچستان، زاهدان.

4.   قویدل رحیمی، عباسی، فرج‌زاده؛ یوسف، اسماعیل، منوچهر (1394). واکاوی سازوکار و مخاطرات توفان حاره‌ای نیلوفر، دانش مخاطرات،2(1)، 34-21.

5.   کاویانی، علیجانی؛ محمدرضا، بهلول (1385). مبانی آب و هواشناسی، انتشارات سمت، چاپ دوازدهم.

6.   لشکری، کیخسروی؛ حسن، قاسم (1389). تحلیل سینوپتیکی توفان گونو و اثرات آن بر جنوب شرق ایران، مجله جغرافیا و برنامه‌ریزی محیطی، 21(3)، 20-1.

7.   Balaji, M., Chakraborty, A., & Mandal, M. 2018. Changes in tropical cyclone activity in north Indian Ocean during satellite era (1981–2014). International Journal of Climatology, 38(6), 2819-2837.

8.   Belanger, J. I., Webster, P. J., Curry, J. A., & Jelinek, M. T. 2012. Extended prediction of North Indian Ocean tropical cyclones. Weather and Forecasting, 27(3), 757-769.

9.   Best Track. (2018, September 5). Retrieved from http://www.rsmcnewdelhi.imd.gov.in/index .php?option=com_content&view=article&id=48&Itemid=194&lang=en

10. Bruyère, C. L., Holland, G. J., & Towler, E. 2012. Investigating the use of a genesis potential index for tropical cyclones in the North Atlantic basin. Journal of Climate, 25(24), 8611–8626.

11. Camargo, S. J., Emanuel, K. A., & Sobel, A. H. 2007. Use of a genesis potential index to diagnose ENSO effects on tropical cyclone genesis. Journal of Climate, 20(19), 4819–4834.

12. Cheung, K. K. 2004. Large-scale environmental parameters associated with tropical cyclone formations in the western North Pacific. Journal of climate, 17(3), 466-484.

13. Datasets, ECMWF. (2018, September 5). Retrieved from https://www.ecmwf.int/en/forecasts/datasets.

14. Elsner, J. B., & Jagger, T. H. 2009. Hurricanes and climate change. New York: Springer.

15. Emanuel, K. 2004. Response of tropical cyclone activity to climate change: theoretical
basis. In: Murnane RJ, Liu K-B (eds) Hurricanes and typhoons: past, present and
future. Columbia University Press, New York, pp. 395–407.

16. Emanuel, K., & Nolan, D. S. 2004. Tropical cyclone activity and the global climate system. In 26th Conference on Hurricanes and Tropical Meteorolgy.

17. Evan AT, Kossin JP, Chung C, Ramanathan, V. 2012. Intensified Arabian Sea tropical storms. Nature, 2012:E2–E3.

18. Feng, T., Chen, G. H., Huang, R. H., & Shen, X. Y. 2014. Large scale circulation patterns favourable to tropical cyclogenesis over the western North Pacific and associated barotropic energy conversions. International Journal of Climatology, 34(1), 216-227.

19. Gray, W. M. 1975. Tropical cyclone genesis. Atmospheric science paper; no. 234.

20. Gray, W. M. 1985. Tropical cyclone global climatology. WMO Technical Document WMO/TD, 72(1), 3-19.

21. Holland, G., & Bruyère, C. L. 2014. Recent intense hurricane response to global climate change. Climate Dynamics, 42(3-4), 617-627.

22. India Meteorological Department. (2018, September 12). Retrieved from https://from www.rsmcnewdelhi.imd.gov.

23. Koh, J. H., & Brierley, C. M. 2015. Tropical cyclone genesis potential across palaeoclimates. Climate of the Past, 11(10), 1433.

24. Kotal, S. D., Bhattacharya, S. K., Bhowmik, S. R., & Kundu, P. K. 2014. Growth of cyclone Viyaru and Phailin–a comparative study. Journal of earth system science, 123(7), 1619-1635.

25. Krishna Mohan, K. S., Mohanakumar, K. 2013. Environmental Influences on the Frequency and Intensity of North Indian Ocean Tropical Cyclones, PhD dissertation, Cochin University Of Science And Technology.

26. Mohanty, U. C., Osuri, K. K., Pattanayak, S., & Sinha, P. 2012. An observational perspective on tropical cyclone activity over Indian seas in a warming environment. Natural hazards, 63(3), 1319-1335.

27. Murakami, H., Sugi, M., & Kitoh, A. 2014. Future Changes in Tropical Cyclone Activity in the North Indian Ocean Projected by the New High-Resolution MRI-AGCM. In Monitoring and Prediction of Tropical Cyclones in the Indian Ocean and Climate Change (pp. 65-71). Springer, Dordrecht.

28. Murakami, H., Vecchi, G. A., & Underwood, S. 2017. Increasing frequency of extremely severe cyclonic storms over the Arabian Sea. Nature Climate Change, 7(12), 885.

29. Nolan, D. S. 2011. Evaluating environmental favorableness for tropical cyclone development with the method of point downscaling. Journal of Advances in Modeling Earth Systems, 3(3).

30. Rakhecha, P. R., & Singh, V. P. 2009. Tropical storms and hurricanes. In Applied Hydrometeorology (pp. 126-162). Springer, Dordrecht.

31. Noori, R., Tian, F., Berndtsson, R., Abbasi, M. R., Naseh, M. V., Modabberi, A., ...& Kløve, B. (2019). Recent and future trends in sea surface temperature across the Persian Gulf and Gulf of Oman. PloS one, 14(2).

43.

32. RSMC, New Delhi.(2018, September 12). Retrieved from http://www.rsmcnew delhi .imd.gov

33. Sabade, B., & Mohapatra, M. 2017. Very Severe Cyclonic Storm MADI over Bay of Bengal, 6–13 December 2013: A Diagnostic Study. In Tropical Cyclone Activity over the North Indian Ocean (pp. 117-130). Springer, Cham.

34. Sharmila, K.J.E Walsh. 2017. Impact of Large-Scale Dynamic versus Thermodynamic Climate Conditions on Contrasting Tropical Cyclone Genesis Frequency, Journal of Climate, Vol. 30, No. 22.

35. Shengyan, Y., Juncheng, Z., & Subrahmanyam, M. V. (2019). Sea surface temperature cooling induced by Tropical cyclone Hudhud over Bay of Bengal.

36. Song, Y., Wang, L., Lei, X., & Wang, X. 2015. Tropical cyclone genesis potential index over the western North Pacific simulated by CMIP5 models. Advances in Atmospheric Sciences, 32(11), 1539–1550.

37. Sun, Y., Zhong, Z., Li, T., Yi, L., Hu, Y., Wan, H., ...& Li, Q. (2017). Impact of ocean warming on tropical cyclone size and its destructiveness. Scientific reports, 7(1), 1-10.

38. Tsuboi, A., Takemi, T., & Yoneyama, K. 2016. Seasonal environmental characteristics for the tropical cyclone genesis in the Indian Ocean during the CINDY2011/DYNAMO field experiment. Atmosphere, 7(5), 66.

39. Walsh, K. J., McBride, J. L., Klotzbach, P. J., Balachandran, S., Camargo, S. J., Holland, G., ...& Sugi, M. 2016. Tropical cyclones and climate change. Wiley Interdisciplinary Reviews: Climate Change, 7(1), 65-89.

40. Yan, Q., Wei, T., & Zhang, Z. 2017. Variations in large-scale tropical cyclone genesis factors over the western North Pacific in the PMIP3 last millennium simulations. Climate Dynamics, 48(3-4), 957-970.

41. Yanase, W., Taniguchi, H., & Satoh, M. 2010. The genesis of tropical cyclone Nargis (2008): Environmental modulation and numerical predictability. Journal of the Meteorological Society of Japan. Ser. II, 88(3), 497-519.

42.          Yang, Y., Yang, L., & Wang, F. 2017. Analyzing the influences of two types of El Niño on tropical cyclone genesis with a modified genesis potential index. Chinese journal of oceanology and limnology, 35(2), 452-465.