بررسی اثر تاج پوشش جنگل در دو حالت با برگ (leaf-on) و بدون برگ (leaf-off) بر داده های PALSAR-2 به منظور برآورد زیتوده در جنگل های هیرکانی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه جنگل داری، دانشکده منابع طبیعی، دانشگاه تربیت مدرس

2 دانشیار گروه سنجش ازدور، دانشکده مهندسی ژئودزی و ژئوماتیک، دانشگاه صنعتی خواجه نصیرالدین طوسی

3 دانشیار گروه جنگل داری، دانشکده منابع طبیعی، دانشگاه تربیت مدرس

10.22131/sepehr.2020.44581

چکیده

با توجه به اهمیت عوامل بیوفیزیکی جنگل و پایش تغییرات آنها برای مدیریت جنگل­ ها، توسعه مدل­ های صحیح برای برآورد این عوامل ضروری است. با در نظر گرفتن محدودیت­ های آماربرداری­ های زمینی، استفاده از روش­ های سنجش از دور برای برآورد این عوامل ارجح است. استفاده از داده­ های رادار به صورت محدود در جنگل­ های هیرکانی برای برآورد زیتوده استفاده شده است. در مطالعه حاضر، پتانسیل داده­ های پلاریمتری PALSAR-2 برای برآورد زیتوده در جنگل­ های هیرکانی بررسی شد. آماربرداری در چهار رویش گاه مختلف شامل جنگل حفاظت شده، جنگل طبیعی، جنگل تخریب­شده و جنگل­ کاری آمیخته انجام و مقدار زیتوده در پلات­های آماربرداری محاسبه شد. پس از استخراج داده­ های PolSAR با استفاده از تصاویر اخذ شده در فصل بهار و زمستان، میزان و نوع رابطه آن­ها با زیتوده بررسی شد. نتایج نشان داد طبقه­ بندی جنگل­ های مورد مطالعه براساس محدوده زیتوده و درصد تاج ­پوشش برای توسعه مدل ­ها ضروری است به گونه­ ای که برای هر نوع خاص جنگل، نوع متفاوتی از مشخصه ­های پلاریمتری کارایی دارند. همچنین نتایج نشان داد داده ­های حاصل از تصاویر اخذ شده در فصل بهار در حالت بابرگ تاج­ پوشش ارتباط مناسب­ تری با زیتوده دارند. نتایج مدل­سازی با استفاده از رگرسیون خطی چندگانه نشان داد مولفه ­های حاصل از تجزیه پلاریمتری برای برآورد زیتوده مناسب­ تر عمل می­ کنند و برای هر رویشگاه، مشخصه ­های متفاوتی قابل استفاده هستند.  نتایج کلی این مطالعه و مقایسه آن با مطالعات دیگر بیانگر آن است که طبقه بندی پوشش درختی براساس میزان زیتوده (حجم) در هکتار، وضعیت تاج پوشش و همچنین وضعیت توپوگرافی منطقه به منظور توسعه مدل­ های برآورد زیتوده ضروری به نظر می ­رسد. همچنین نتایج نشان داد برای رویشگاه ­های مختلف با مشخصات و خصوصیات متفاوت نوع خاصی از داده­ های پلاریمتری با زیتوده همبستگی نشان می ­دهد.

کلیدواژه‌ها


عنوان مقاله [English]

Investigating the effect of leaf-on and leaf-off canopy on PALSAR-2 data with the aim of estimating above-ground biomass in Hyrcanian Forests

نویسندگان [English]

  • Parisa Golshani 1
  • Yasser Maghsoudi 2
  • Hormoz Sohrabi 3
1 Department of forestry, TarbiatModares University, Tehran, Iran
2 Faculty of geodesy and geomatics engineering, K.N. Toosi University of Technology, Tehran, Iran
3 Department of Forestry, TarbiatModares University, Tehran, Iran
چکیده [English]

Extended Abstract
Introduction
Estimation of forest Carbon stocks plays an important role in assessing the quantity of carbon exchange between the forest ecosystem and the atmosphere. Direct methods of measuring carbon stock are not economically efficient. Optical remote sensing methodsalso have limited capability in predicting forest biomass, because the spectral response of optical images is related to the interaction between solar radiation and canopy, especially in mature forests. These obstacles limit the efficiency of optical sensors for forest biomass estimation. Recently, airborne data has received a great deal of scientific and operational attention for estimation of forest features. LiDAR data also faces challengessuch as limited efficiency in large areas, high costs and large data volumes. In contrast to the optical and LiDAR systems, SAR systems have some advantages, such as the possibility of data collection in any weather condition, penetration through clouds and canopy, and easy access. The potential of SAR images with quad polarization for the estimation of Iranian Hyrcanian forests biomass will be investigated. The main purpose of this study was to investigate the efficiency of ALOS-2 /PALSAR-2 backscattering coefficients andpolarimetric features in leaf-on and Leaf-off crown conditions, evaluate the linear regression model and select the most appropriate variables for biomass estimation.
 
Material and methods
The study area is located in a part of forests of Mazandaran province. The region forms a part of the deciduous broadleaf temperate plain forests. The forestsunder study was classified into 4 major types: (1) Forest reserve, (2) Natural forest, (3) Degraded forest and (4) Mixed species forest plantations. 115 circular sample plots (each including 0.1 hectares)were collected from the 4 different sites with various forest structures and biomasses. In each sample, tree species and diameter at breast height (DBH) of all trees with DBH > 7.5 cm were recorded. Allometric equations were used to convert tree diameter to biomass. The present study is based on polarimetric L-band PALSAR-2 data collected in spring and winter. Backscattering matrix was generated using the PALSAR data which consists of amplitude and phase information. Speckle noise filtering was performed using the Refined Lee adaptive filter. Following the filtering, all polarimetric features were extracted. After converting the SAR products to NRCS, geometric correction and georeferencingwere performed and the average backscattering coefficient (sigma naught value)was extracted for each sample plot by overlaying the AOI layers on corresponding SAR images. Finally, the relationship between forest biomass and backscattering intensity was investigated.
 
Results and discussion
The resultsvary regarding to the forest type, the range of biomass and forest canopy cover percentage.Forest type and biomass range as well as canopy cover percentage affect the scattering mechanism and correlations between biomass and SAR backscattering coefficient. Canopy cover percentageofthe 1stand 4thsites were over 90% and consequently, the sensitivity of HV backscatter value to biomass was higher than HH and VV. In the 2nd and especially 3rd sites, the correlation between HH backscattervalueand AGB was better than its correlation with HV backscatter. This is mainly because of the canopy structure in these sites which is not complete and the fact that the sensitivity of HH backscatter value to biomass is higher than HV.
Results indicate in the 1st and 4th sites, the correlation between volume scatter component of decomposition methods with AGB was better than its correlation with double-bounce scatter component. In contrast, the double-bounce decomposition componentsexhibited the best results in the 2nd and 3rd sites. These findings are in agreement with the results obtained from the T3 matrix components. The least correlation value was observed between Freeman decomposition components and AGB. The volume scatter component of Cloude and also double-bounce component of Freeman did not provide suitable results.
Results also indicate higher efficiency of images collected in spring as compared to those collected in winter.Linear regression results show that in the best possible situation, RMSE of the first forest habitat was 34.68 t/ha, and 30.09, 27.07 and 23.69 t/ha were estimated for the 2nd, 3rd, and 4th forest habitats, respectively. Therefore, it seems that classification of forests is necessary before biomass estimation.
 
Conclusion
The potential of PALSAR-2 data for Hyrcanian forest biomass estimation was assessed in this study. We demonstrated that L-band data are sensitive to the above-ground biomass (AGB) of Hyrcanianforestsand can be used to provide accurate estimates of biomass. Findings confirmed that decomposition methods are more efficient than backscattering coefficients for biomass mapping.

کلیدواژه‌ها [English]

  • Above-ground Biomass
  • Polarimetry
  • Synthetic aperture radar
  • ALOS-2 PALSAR-2
1. امینی، صادقی؛ جلال. یاسر.1391. “ تصاویر ماهواره ای نوری و راداری در مدل سازی زیست توده جنگل های شمال ایران.” سنجش از دور و GIS ایران 4 (4): 69–82.
2. رمضانی، صاحبی؛ محمدرضا.، محمودرضا. 1394. “ برآورد زیست توده جنگل با استفاده از تصاویر ماهواره ای SAR و اپتیک.” نشریه علمی پژوهشی مهندسی فناوری اطلاعات مکانی 3 (1): 15–26.
3. شریفی، علیرضا. 1394. “ تخمین زیست توده جنگل با استفاده از تصاویر چندپلاریزه SAR.” دانشگاه تهران، پایان نامه دکتری, 182.
4. Antropov, Oleg. 2017. “Polarimetric ALOS PALSAR Time Series in Mapping Biomass of Boreal Forests,” 1–24. https://doi.org/10.3390/rs9100999.
5. Attarchi, Sara, and Richard Gloaguen. 2014. “Improving the Estimation of above Ground Biomass Using Dual Polarimetric PALSAR and ETM+ Data in the Hyrcanian Mountain Forest (Iran).” Remote Sensing 6 (5): 3693–3715. https://doi.org/10.3390/rs6053693.
6. Chowdhury, Tanvir Ahmed, Christian Thiel, and Christiane Schmullius. 2014. “Growing Stock Volume Estimation from L-Band ALOS PALSAR Polarimetric Coherence in Siberian Forest.” Remote Sensing of Environment 155: 129–44. https://doi.org/10.1016/j.rse.2014.05.007.
7. Cloude, Shane Robert. 1985. “Radar Target Decomposition Theorems.” Institute of Electrical Engineering and Electronics Letter 21 (1): 22–24.
8. Englhart, S., V. Keuck, and F. Siegert. 2011. “Aboveground Biomass Retrieval in Tropical Forests - The Potential of Combined X- and L-Band SAR Data Use.” Remote Sensing of Environment 115 (5): 1260–71. https://doi.org/10.1016/j.rse.2011.01.008.
9. Freeman, Anthony, and Stephen L Durden. 1998. “A Three-Component Scattering Model for Polarimetric SAR Data.” IEEE Transactions on Geoscience and Remote Sensing 36 (3): 963–73.
10. Ghasemi, Nafiseh, Mahmod Reza Sahebi, and Ali Mohammadzadeh. 2013. “Biomass Estimation of a Temperate Deciduous Forest Using Wavelet Analysis.” IEEE Transactions on Geoscience and Remote Sensing 51 (2): 765–76. https://doi.org/10.1109/TGRS.2012.2205260.
11. Hamdan, O, I MohdHasmadi, H Khali Aziz, K Norizah, and M S HelmiZulhaidi. 2015. “L-Band Saturation Level for Aboveground Biomass of Dipterocarp Forests in Peninsular Malaysia.” Journal of Tropical Forest Science 27 (3): 388–99.
12. Joshi, Neha P, Edward T A Mitchard, Johannes Schumacher, Vivian K Johannsen, Sassan Saatchi, and RasmusFensholt. 2015. “L-Band SAR Backscatter Related to Forest Cover, Height and Aboveground Biomass at Multiple Spatial Scales across Denmark.” Remote Sensing 7 (4): 4442–72.
13. Lee, Jong-Sen, and Eric Pottier. 2009. Polarimetric Radar Imaging: From Basics to Applications. CRC press.
14. Maghsoudi, Yasser. 2011. “Analysis of Radarsat-2 Full Polarimetric Data for Forest Mapping,” no. 20347: 1–151.
15. Mermoz, St??phane, Thuy Le Toan, Ludovic Villard, Maxime R??jou-M??chain, and Joerg Seifert-Granzin. 2014. “Biomass Assessment in the Cameroon Savanna Using ALOS PALSAR Data.” Remote Sensing of Environment 155: 109–19. https://doi.org/10.1016/j.rse.2014.01.029.
16. Morel, Alexandra C., Sassan S. Saatchi, YadvinderMalhi, Nicholas J. Berry, Lindsay Banin, David Burslem, Reuben Nilus, and Robert C. Ong. 2011. “Estimating Aboveground Biomass in Forest and Oil Palm Plantation in Sabah, Malaysian Borneo Using ALOS PALSAR Data.” Forest Ecology and Management 262 (9): 1786–98. https://doi.org/10.1016/j.foreco.2011.07.008.
17. Neumann, Maxim, Laurent Ferro-Famil, and Andreas Reigber. 2010. “Estimation of Forest Structure, Ground, and Canopy Layer Characteristics from MultibaselinePolarimetric Interferometric SAR Data.” IEEE Transactions on Geoscience and Remote Sensing 48 (3 PART 1): 1086–1104. https://doi.org/10.1109/TGRS.2009.2031101.
18. Santoro, Maurizio, Leif E.B. Eriksson, and Johan E.S. Fransson. 2015. “Reviewing ALOS PALSAR Backscatter Observations for Stem Volume Retrieval in Swedish Forest.” Remote Sensing 7 (4): 4290–4317. https://doi.org/10.3390/rs70404290.
19. Shahrakhzadeh, Unes, HormozSohrabi, Carolyn A Copenheaver, UnesShahrokhzadeh, HormozSohrabi, Carolyn A Copenheaver, UnesShahrakhzadeh, et al. 2015. “Above Ground Biomass and Leaf Area Equations for Three Common Tree Species of Hyrcanian Temperate Forests in Northern Iran.” Botany 93 (10): 663–70.
20. Sumareke, Agnes Mone. 2016. “MODELLING AND MAPPING ABOVEGROUND BIOMASS AND CARBON STOCK USING ALOS-2 PALSAR-2 DATA IN AYER HITAM TROPICAL RAINFOREST RESERVE IN MALAYSIA MODELLING AND MAPPING ABOVEGROUND BIOMASS AND CARBON STOCK USING ALOS-2 PALSAR-2 DATA IN AYER HITAM TROPICAL RAINFO.” Thesis Submitted to the Faculty of Geo-Information Science and Earth Observation of the University of Twente in Partial Fulfilment of the Requirements for the Degree of Master of Science in Geo-Information Science and Earth Observation.
21. Tanase, Mihai A., Rocco Panciera, Kim Lowell, Siyuan Tian, Jorg M. Hacker, and Jeffrey P. Walker. 2014. “Airborne Multi-Temporal L-Band Polarimetric SAR Data for Biomass Estimation in Semi-Arid Forests.” Remote Sensing of Environment 145: 93–104. https://doi.org/10.1016/j.rse.2014.01.024.
22. Touzi, Ridha. 2007. “Target Scattering Decomposition in Terms of Roll-Invariant Target Parameters.” IEEE Transactions on Geoscience and Remote Sensing 45 (1): 73–84. https://doi.org/10.1109/TGRS.2006.886176.
23. Vafaei, Sasan, JavadSoosani, Kamran Adeli, HadiFadaei, HamedNaghavi, Tien Dat Pham, and Dieu Tien Bui. 2018. “Improving Accuracy Estimation of Forest Aboveground Biomass Based on Incorporation of ALOS-2 PALSAR-2 and Sentinel-2A Imagery and Machine Learning: A Case Study of the Hyrcanian Forest Area (Iran).” Remote Sensing 10 (2). https://doi.org/10.1007/s11401-018-1063-7.
24. Viet Nguyen, Luong, Ryutaro Tateishi, Akihiko Kondoh, Ram Sharma, HoanThanh Nguyen, TuTrong To, and DinhHo Tong Minh. 2016. “Mapping Tropical Forest Biomass by Combining ALOS-2, Landsat 8, and Field Plots Data.” Land 5 (4): 31. https://doi.org/10.3390/land5040031.
25. Yamaguchi, Yoshio, Yuki Yajima, and Hiroyoshi Yamada. 2006. “A Four-Component Decomposition of POLSAR Images Based on the Coherency Matrix.” IEEE Geoscience and Remote Sensing Letters 3 (3): 292–96. https://doi.org/10.1109/LGRS.2006.869986.
26. Yu, Yifan, and Sassan Saatchi. 2016. “Sensitivity of L-Band SAR Backscatter to Aboveground Biomass of Global Forests.” Remote Sensing 8 (6): 522. https://doi.org/10.3390/rs8060522.
27. Zhang, Junjie, GunhoSohn, and Mathieu Brédif. 2014. “A Hybrid Framework for Single Tree Detection from Airborne Laser Scanning Data: A Case Study in Temperate Mature Coniferous Forests in Ontario, Canada.” ISPRS Journal of Photogrammetry and Remote Sensing 98: 44–57. https://doi.org/10.1016/j.isprsjprs.2014.08.007.
28. Zyl, Jakob J. van. 1992. “Application of Cloude’s Target Decomposition Theorem to Polarimetric Imaging Radar Data.” SPIE Conference on Radar Polarimetry 1748: 184. https://doi.org/10.1117/12.140615.