ارزیابی مقایسه ای تصاویر سنجنده OLI ماهواره‌ لندست 8 و سنجنده MSI ماهواره سنتینل 2

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار گروه سنجش ازدور و سیستم اطلاعات جغرافیایی، دانشکده جغرافیا، دانشگاه تهران

2 دانشجوی گروه سنجش ازدور و سیستم اطلاعات جغرافیایی، دانشکده جغرافیا، دانشگاه تهران

10.22131/sepehr.2020.44582

چکیده

مطالعه تطابق محتوای اطلاعاتی سنجنده‌ها به منظور جایگزینی سنجنده­ ها در مناطقی که امکان دسترسی آسان به داده‌های آنها وجود ندارد، در مطالعات سنجش از دور ضروری است. هدف از این پژوهش مقایسه‌ی دو سنجنده‌ی MSI ماهواره‌ی سنتینل ۲ و OLI ماهواره‌ی لندست ۸ می‌باشد تا امکان استفاده از آرشیو تصاویر لندست و همچنین جایگزینی تصاویر این دو ماهواره به جای یکدیگر مورد ارزیابی قرار بگیرد. برای رسیدن به این هدف، شهرستان مینودشت به عنوان منطقه‌ی مورد مطالعه انتخاب گردید. این منطقه از نظر کلاس های پوشش اراضی متنوع بوده و انواع مختلف طبقات پوشش زمین در آن دیده می ­شود. به منظور بررسی محتوای اطلاعاتی دو سنجنده، سه جفت تصویر نسبتا همزمان از دو سنجنده انتخاب شد. ابتدا باندهای متناظر دو سنجنده که در محدوده طول موج‌ یکسان فعالیت می­ کنند، تعیین شد. سپس هر زوج تصویر نسبت به هم ثبت هندسی شدند. جهت یکسان کردن اندازه‌ی پیکسل‌ها، قدرت تفکیک مکانی سنجنده‌ی MSI به ۳۰ متر تبدیل شد تا همبستگی باندهای متناظر محاسبه شود. در گام بعدی، طبقه بندی ماشین بردار پشتیبان بر روی تصاویر انجام شد. نمونه­ های تعلیمی از نقشه‌ی کاربری اراضی شهرستان مینودشت و تصاویر ماهواره‌ای با قدرت تفکیک مکانی بالا انتخاب شد. برای ارزیابی طبقه بندی با استفاده از نمونه­ های مستقل، ماتریس خطا تشکیل شد. نتایج نشان داد که تمامی باندهای متناظر همبستگی بالاتر از مقدار ۰.8 دارند و میزان صحت کلی و ضریب کاپای حاصل از طبقه بندی برای هر دو سنجنده تفاوت معنی داری با یکدیگر ندارند. میانگین صحت کلی به دست آمده برای سنجنده‌های OLI و MSI به ترتیب 91/35٪ و 94/79٪ می‌باشد. نتایج بدست آمده، نشانگر تطابق بالای دو سنجنده چند طیفی می ­باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Preliminary comparative assessment of Sentinel 2 and Landsat 8 (MSI and OLIsensors) images

نویسندگان [English]

  • Sara Attarchi 1
  • Najmeh Poorakbar 2
1 Assistant professor, Remote sensing and GIS department, Faculty of geography, University of Tehran
2 Remote sensing and GIS Department, Faculty of Geography, University of Tehran. Tehran, Iran
چکیده [English]

Extended Abstract
Introduction
Free access to the Landsat dataset and Sentinel 2 images has provided a great opportunity for long-term monitoring of resources. Landsat 8 was launched in 2013 to continue the mission of the previous Earth observation satellites. Landsat 8multi-spectral sensor, Operational Land Imager (OLI), provides multi-spectral images with 30-meter resolution. Sentinel 2 was launched in 2015 with a multispectral sensor called MSI which captures images with different spatial resolutions (10m to 60m). The secret mission of Landsat satellites started in the 1970s and they have the longest archive of satellite images collected from the Earth. Sentinel 2 offers higher spatial, spectral and temporal resolutions and therefore it is important to compare the compatibility of Sentinel 2 and Landsat 8 images. OLI and MSI sensors both operate in the optical region, thus weather conditions can impose some limitations on their data acquisition. In such circumstances, data collected by a compatible and similar sensor can replace the cloud-covered images.
Generally, spectral features of new sensors are designed in such a way toconform to the corresponding bands of the previous sensors. The present study compares the corresponding bands of MSI and OLI sensors. The efficiency of both sensors in the classification of a heterogeneous and complex region has also been investigated.
 
Materials & Methods
Three near-simultaneous pairs of Landsat 8 and Sentinel-2 scenes were obtained to conduct a comparative study. Images were acquired in August 2017, November 2017, and July 2018.Minudasht - in northern Iran- was selected as the study area because of the presence of different land cover classes including rainfed agricultural lands, irrigated agricultural lands, forests, residential areas, and bare lands.Thescenes were processed for further analysis. First, the scenes were atmospherically corrected. In the next step, spatial resolution of MSI bands was resampled to 30 m, and each pair of mages were geometrically co-registered. To do so, 10 tie points were selected, and scenes were co-registered usingthe first-degree polynomial method. RMSE values were reported 2.5 m, 2.4 m, and 2.8 m for August 2017, November 2017, and July 2018, respectively. To investigate the similarities and differences of the sensors’ spectral content, the correlation between corresponding bands of the two sensors was estimated.
Then, images were classified using the support vector machine (SVM) algorithm. Five distinct land cover classes were found in the region including rainfed agricultural land, gardens and irrigated agricultural land, forests, residential areas, and bare lands. The training samples were selectedfromthe land use map and high-resolution Google Earth images. Approximately 300 training samples were selected for each land cover class. The accuracy of classification results was compared to verify the efficiency of two sensors in land cover mapping.  Independent validation samples were selected for each class. Overall accuracy, commission error, and omission error were calculatedbased on the confusion matrices.
 
Results & Discussion
The reported correlation coefficientfor all corresponding bands was higher than 0.8. Results indicate a high level of similarity between the two sensors. Similar findings were reported by previous studies. Overall classification accuracy ofOLIimagescollected in August 2017, November 2017, and July 2018 was 91. 35 %, 89.60 %, and 93.12%, respectively. Overall classification accuracy ofMSI images collected inAugust 2017, November 2017, and July 2018 was 94.76 %, 95.55 %, and 94.07%, respectively. As it is obvious, Sentinel 2showed a higher performance in comparison to Landsat’s, because of its higher spatial resolution. A medium spatial resolution image collected from a complex landscape is often composed of mixed pixels, since different land cover types exist in one pixel. As the image’s spatial resolution improves, the dimensions of each pixeldecrease. Therefore, the number of mixed pixels will decrease and a higher classification accuracy will be expected.
 
Conclusion
Results confirm the similarity of two sensors in land cover classification. However, the findings could not be extended to other applications. MSI sensorslacka thermal bandand thus are not applicable when such a feature is needed (for an instance inthe retrieval of land surface temperature). In such applications, MSI cannot substitute OLI. For further studies, it is necessary to compare the performance of these sensors in different regions, since different land cover types may impactclassification results. Findings of the present study may raise attention to the differences between Landsat 8- OLI and Sentinel 2 MSI. Further studies can be conducted to investigate the differences between these two sensors. The possible similarities of othersimilar sensors can also be a topic for further investigations.

کلیدواژه‌ها [English]

  • Landsat8
  • Sentinel 2
  • Correlation
  • Support Vector Machine
  • confusion matrix
1- اکبری، شکاری؛ الهه، علی (1392)،پردازش و استخراج اطلاعات از داده‌های ماهواره‌ای با استفاده از نرم افزار ENVI با نمونه‌های کاربردی در علوم زمین، نقشه برداری، جغرافیا و محیط زیست، انتشارات ماهواره، جلداول.
2- شیرازی، متین فر، نعمت الهی، زهتابیان؛ میترا، حمید‌رضا، محمدجواد، غلامرضا(1389) مقایسه‌ ی محتوای اطلاعاتی باندهای سنجنده‌های ASTER و LISS-II در مناطق خشک (مطالعه موردی: پلایای دامغان)، کاربردسنجش ازدور و GIS درعلوم منابع طبیعی، سال اول، شماره 1.
3- علوی پناه، سیدکاظم (1382)، کاربرد سنجش از دور در علوم زمین، انتشارات دانشگاه تهران.
 
4. Alavipanah, S. K., A. H. Ehsani, H. Matinfar, A. Rafiei
and A. Amiri. )2006(. Comparison of Information of TM and ETM+ Bands in Arid and Urban Areas.Geographic research.No.56. pp. 47.
5. Arekhi, M., Goksel, C., BalikSanli, F., &Senel, G. (2019). Comparative Evaluation of the Spectral and Spatial Consistency of Sentinel-2 and Landsat-8 OLI Data for IgneadaLongos Forest. ISPRS International Journal of Geo-Information, 8(2), 56.
6. Bannari, A. (2019). Synergy between Sentinel-MSI and Landsat-OLI to Support High Temporal Frequency for Soil Salinity Monitoring in an Arid Landscape.In Research Developments in Saline Agriculture (pp. 67-93).Springer, Singapore.
7. Congalton, R. G., & Green, K. (2002). Assessing the accuracy of remotely sensed data: principles and practices.CRC press.
8. Darvishsefat, A. (2002). The Eliminate of Satellite Data. Geomatica conference.
9. Drusch, M., Del Bello, U., Carlier, S., Colin, O., Fernandez, V., Gascon, F., Hoersch, B., Isola, C., Laberinti, P., Martimort, P., Meygret, A., Spoto, F., Sya, O., Marchese, F., Bargellini, P., (2012). Sentinel-2: ESA’s optical high-resolution mission for GMES operational services. Remote Sens. Environ. 120, 25–36.
10. Hagolle, O.; Sylvander, S.; Huc, M.; Claverie, M.; Clesse, D.; Dechoz, C.; Lonjou, V.; Poulain, (2015). V. SPOT-4 (Take 5): Simulation of Sentinel-2time series on 45 large sites. Remote Sensing, 7, 12242–12264.
11. Immitzer, M.; Vuolo, F.; Atzberger, C., (2016). First Experience with Sentinel-2 Data for Crop and Tree Species Classifications in Central Europe. Remote Sensing, 8, 166.
12. Irons, J.R., Dwyer, J.L., Barsi, J.A., (2012). The next Landsat satellite: the Landsat data continuity mission. Remote Sens. Environ. 122, 11–21.
13. Jensen, J. R., &Lulla, K. (1987). Introductory digital image processing: a remote sensing perspective. Taylor & Francis.
14. Korhonen, L., Packalen, P., &Rautiainen, M. (2017). Comparison of Sentinel-2 and Landsat 8 in the estimation of boreal forest canopy cover and leaf area index.Remote sensing of environment, 195, 259-274.
15. Lefebvre, A., Sannier, C., &Corpetti, T. (2016). Monitoring urban areas with Sentinel-2A data: Application to the update of the Copernicus high resolution layer imperviousness degree. Remote Sensing, 8(7), 606.
16. Mandanici, EmanueleBitelli, Gabriele (2016). Preliminary comparison of sentinel-2 and landsat8 imagery for a combined use, Remote Sensing.
17. Mountrakis, GiorgosIm, JunghoOgole, Caesar (2011). Support vector machines in remote sensing : A review, ISPRS Journal of Photogrammetry and Remote Sensing.66, 247-259.
18. Naegeli, K., Damm, A., Huss, M., Wulf, H., Schaepman, M., &Hoelzle, M. (2017). Cross-Comparison of albedo products for glacier surfaces derived from airborne and satellite (Sentinel-2 and Landsat 8) optical data. Remote Sensing, 9(2), 110.
19. Novelli, Antonio Aguilar, Manuel A. Nemmaoui, AbderrahimAguilar, Fernando J. Tarantino, Eufemia, (2016). Performance evaluation of object based greenhouse detection from Sentinel-2 MSI and Landsat 8 OLI data: A case study from Almería (Spain), International Journal of Applied Earth Observation and Geoinformation.59, 403-411.
20. Paul, F.; Winsvold, S.; Kääb, A.; Nagler, T.; Schwaizer, G. (2016) Glacier Remote Sensing Using Sentinel-2. Part II: Mapping Glacier Extents and Surface Facies, and Comparison to Landsat 8. Remote Sensing, 8, 575.
21. Pesaresi, M.; Corbane, C.; Julea, A.; Florczyk, A.; Syrris, V.; Soille, P. (2016) Assessment of the Added-Value of Sentinel-2 for Detecting Built-up Areas. Remote Sensing, 8, 299.
22. Van Der Werff, H., & Van Der Meer, F. (2016). Sentinel-2A MSI and Landsat 8 OLI provide data continuity for geological remote sensing. Remote sensing, 8(11), 883.
23. Wu, C, W., Jinsong, D., Ke, W., Ligang, M., &Tahmassebi, A. R. S. (2016). Object-based classification approach for greenhouse mapping using Landsat-8 imagery. International Journal of Agricultural and Biological Engineering, 9(1), 79-88.
24. XI, Y., Thinh, N. X., & LI, C. (2019). Preliminary comparative assessment of various spectral indices for built-up land derived from Landsat-8 OLI and Sentinel-2A MSI imageries. European Journal of Remote Sensing, 52(1), 240-252.
25. Yantao XI, Nguyen Xuan Thinh& Cheng LI (2019) Preliminary comparative assessment of various spectral indices for built-up land derived from Landsat-8 OLI and Sentinel-2A MSI imageries, European Journal of Remote Sensing, 52:1, 240-252.
26. Zhang, H., Zhang, Y., & Lin, H. (2012). A comparison study of impervious surfaces estimation using optical and SAR remote sensing images. International Journal of Applied Earth Observation and Geoinformation, 18, 148-156.
27. Zhang, J., Pu, R., Yuan, L., Wang, J., Huang, W., & Yang, G. (2014). Monitoring powdery mildew of winter wheat by using moderate resolution multi-temporal satellite imagery. PloS one, 9(4), e93107.
28. Zhang, H. K., Roy, D. P., Yan, L., Li, Z., Huang, H., Vermote, E., ...& Roger, J. C. (2018). Characterization of Sentinel-2A and Landsat-8 top of atmosphere, surface, and nadir BRDF adjusted reflectance and NDVI differences. Remote sensing of environment, 215, 482-494.