پایش تغییرات رطوبت خاک در تالاب هورالعظیم و ارتباط آن با طوفان‌های گرد و غبار در جنوب غرب ایران

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیاراقلیم شناسی، گروه جغرافیا، دانشگاه پیام نور، تهران، ایران

2 استادیاراقلیم شناسی، گروه جغرافیای طبیعی، دانشگاه سیستان و بلوچستان، زاهدان، ایران

10.22131/sepehr.2020.44598

چکیده

 
رطوبت خاک نقش مهمی در تبادل ماده و انرژی میان سطح زمین و جو دارد. کمبود یا فقدان رطوبت خاک، به عنوان یکی از عوامل شتاب دهنده به ایجاد و گسترش کانون ‌های گرد و غبار شناخته می‌ شود. تالاب هورالعظیم در جنوب غرب ایران، در دهه‌های اخیر به دلایل مختلف با تنش‌های آبی مواجه بوده است. هدف از این بررسی، پایش تغییرات زمانی-مکانی رطوبت خاک در تالاب هورالعظیم و ارتباط آن با فراوانی رخداد طوفان‌های گرد و غبار در جنوب غرب ایران می‌باشد. برای این منظور، پایش تغییرات زمانی- مکانی رطوبت خاک برپایه اطلاعات سنجش از دور بررسی گردیده است. تصاویر 8 روزه از سنجنده مادیس ماهواره اکوا در دوره 15 ساله(2017-2003) اساس این بررسی را شکل می‌دهد. در سوی دیگر، فراوانی سالانه رخدادهای گرد و غبار در جنوب غرب ایران در دوره 2017-1987 جهت بررسی پاسخ شرایط جوی به تغییرات محیطی تالاب مورد ارزیابی قرار گرفته است. نمایه‌های سنجش از دور شامل دمای رویه زمین(LST)، شاخص پوشش گیاهی تعدیل کننده اثر خاک(SAVI) و شاخص رطوبت خاک عمودی(PSMI) می‌باشند. نتایج این بررسی، بیانگر روند افزایشی دامنه شاخص‌های دور سنجی می‌باشد. دامنه شاخص پوشش گیاهی، رو به ارزش‌های بیشتر می‌رود که به مفهوم کاهش تراکم پوشش گیاهی می‌باشد. ارزش‌های شاخص رطوبت خاک عمودی نیز روند افزایشی دارد که بیانگر کاهش رطوبت خاک می‌باشد. آزمون‌های آماری نشان داد که فراوانی طوفان‌های گرد و غبار در ایستگاه‌های بستان و صفی‌آباد دزفول در سطح معنی داری 0/01 و سایر ایستگاه‌ها در سطح معنی‌داری 0/05 روندهای افزایشی داشته‌اند. همچنین مقادیر بتا نشان داد که هرساله حدود یک روز به تعداد روزهای گرد و غبار در ایستگاه های صفی آباد و بستان افزوده شده است. بنابراین کاهش رطوبت خاک و کاهش تراکم پوشش گیاهی منجر به افزایش دمای رویه زمین شده که این تغییرات شرایط محیطی تالاب هورالعظیم بر فراوانی رخداد طوفان‌های گرد و غبار اثر می‌گذارند.
 

کلیدواژه‌ها


عنوان مقاله [English]

Monitoring variability of soil moisture in Hour-al-Azim Wetland and its relation to dust storms in southwest Iran

نویسندگان [English]

  • Mahdi Sedaghat 1
  • Hamid Nazaripour 2
1 Assistant professor of climatology, Department of geography, Payame Noor University, Tehran, Iran.
2 Department of physical geography, University of Sistan and Baluchestan, Zahedan, Iran
چکیده [English]

Extended Abstract
Introduction
Soil moisture is considered to be a key parameter in meteorology, hydrology, and agriculture, and the estimation of its temporal-spatial distribution contributes to understanding the relations between precipitation, evaporation, water cycle, and etc. Soil moisture reduction results in the creation of centers susceptible to dust storms. With socio-economic impacts ranging from urban to intercontinental and from a few minutes to several decades, this can challenge regional development. The first estimate of potential dust sources is derived from the soil properties. With the reduction of surface soil moisture and the wind speedcrossing a certain threshold level, wind erosion process can cause the formation of dust storms. Field studies have proved that increasing the moisture content in soil from zero to about 3%, reduces the dust concentrationsignificantly.
To understand the climatology of dust and develop related numerical predictive methods, continuous recording of dust storms is essential, which requires effective and continuous monitoring of the variations in surface soil moisture. Remote sensing technology is an effective method for calculating soil moisture. This technology was first used for the estimation of energy flux and surface soil moisture in the 1970s. To extract the surface soil moisture content, some remote sensing methods use surface radiation temperature and some others apply water transfer (soil/vegetation/air) (SVAT) model. Various indices have been developed for soil moisture monitoring, such as soil moisture (SM), soil water index (SWI), Temperature-Vegetation-Dryness Index (TVDI), Soil Moisture Index (SMI) and Perpendicular Soil Moisture Index (PSMI), all of which combine vegetation and surface temperature variables.
 
Materials and Methods
Soil moisture is considered to be a significant parameter in the exchange of mass and energy between the Earth surface and the atmosphere. Lack of soil moisture or decreased moisture in soil is considered to be a factoraccelerating the process of dust storm formation. During the previous decades, water stresses on the ecosystem of Hour-al-Azim have transformed this wetland into one of the main dust centers in the southwest Iran. Hour-al-Azim is one of the largest wetlands in southwestern Iran. This wetland is shared between in Iran and Iraq. It is located between N 30° 58´- N31° 50´ and E 47° 20´- 47° 55´. The Iranian part of this wetland encompassed an area of 64,100 ha in the 1970s, while in the 2000s, the area has decreased to only 29,000 ha.
The present study aims to monitor the spatial-temporal variability of soil moisture in Hour-al-Azim wetland and to investigate the relation between these changes and dust storms in the southwest Iran. To reach this end, we used 8-day images obtained from the Aqua satellite in the period of 2003 to 2017 and also annual frequency of dust storms with a visibility of less than 1000 m in the period of1987–2017.
A database consisting of 189 images of the red band, near-infrared band, and ground surface temperature (LST) was created, which contained 4 images per year (one image per season). The resolution of the red / near-infrared band data and daily LST values were 231.65 and 926.62 meters, respectively. Then, soil adjusted vegetation indices (SAVI) and perpendicular soil moisture index (PSMI) were extracted. SAVI index is used to reduce the effect of background soil on vegetation cover in semi-arid and arid environments with less than 30% vegetation cover.Compared to NDVI, SAVIwith L = 0.5reduces the effect of soil changes on green plants. In the next step, a trapezoidal method was used to calculate the PSMI index. In order to investigate changes in the soil moisture content of the Hour-al-Azim wetland, three time series obtained from regional mean of SAVI, LST and PSMI remote sensing indices and a time series consisting of the number of days with dust storms observed in the 9 stations were evaluated using simple linear regression test.
 
Results and discussion
Extracting Soil Adjusted Vegetation Index indicated that in the study period, the highest values of this index was observed with a regional mean of 0.15 on 4/7/2014 and the lowest values was observed with a regional mean of 0.08 on 1/1/2005. Land Surface Temperature survey showed that during the study period, the highest values of this index was observed with a regional mean of 54.42 ° C on 7/4/2010 and the lowest values was observed with a regional mean of 17.28 ° C on 1/1/2007. The regional mean of Perpendicular Soil Moisture Index indicates that despite winter is considered to bethe wettest season of the region, PSMI index with a regional mean of 0.2 has experienced the driest soil moisture conditionsat the beginning of winter (1/1/2016),while it had experienced the wettest soil moisture conditionsin the same season on 1/1/2009 with a regionalaverage of 0.13.
 
Conclusion
Finding of the present study indicate an increasing trend in the range of remote sensing indicators. The range of SAVI index is increasing, which means that the density of vegetation in the Wetland is decreasing. Perpendicular Soil Moisture Index values also show an increasing trend, indicating a decrease in soil moisture content. As a result of the decrease in soil moisture, the vegetation density also has decreased and the land surface temperature has increased. Results of statistical tests indicate the role of changes in environmental conditions of Hour-al-Azim wetland in the frequency of dust storms. Using findings of the present study, or studies such as Kim et al. (2017), it is possible to take advantage of soil moisture variations for the prediction of dust generation, its emission, and spread level.

کلیدواژه‌ها [English]

  • Vegetation index
  • Soil moisture index
  • Land surface temperature
  • Trend Analysis
  • Simple linear regression
  • Iran
1.  بهرامی،ح.‌ع.،جلالی،م.،درویشی بلورانی، ع. و عزیزی، ر. (1392). مدل سازی مکانی - زمانی وقوع طوفان ‌های گرد و غبار در استان خوزستان.  سنجش از دور و GIS ایران، سال  5،شماره  2، صفحه 114-95.
2.  شعاعی، ض.، مددی، غ.، نوروزی، ع. ا.  و کلاهچی ،ع . (1394).  بررسی رطوبت خاک در مناطق تولید گرد و غبار   ( مطالعه موردی استان ایلام). اولین کنفرانس بین المللی گرد و غبار ، دانشگاه شهید چمران اهواز.
3.  علوی‌ پناه، س.ک. (1382).  کاربرد سنجش از دور در علوم زمین  (خاک). انتشارات دانشگاه تهران، تهران.
4.  قاضی ، م.، بهرامی ، ح . ع .، درویشی بلورانی ، ع. و میرزایی ، س. (1396). تخمین میزان آهک خاک در کانون ‌های گرد و غبار با استفاده از طیف سنجی VNIR و تصاویر ماهواره ‌ای سنجندهOLI.  سنجش از دور و سامانه اطلاعات جغرافیایی در منابع طبیعی، سال 8، شماره  4، صفحه  16-1.
5.  کشاورز ، م .، وظیفه ‌دوست ، م. ، علیزاده ، ا. و اسدی ،ع. (1390).  استخراج و روند یابی ر طوبت خاک به کمک داده ‌های ماهواره ‌ای سنجنده مادیس مطالعه موردی:  استان اصفهان.  نشریه آبیاری و زهکشی ایران ،شماره  2،جلد  5،صفحه  219-209.
6.  نورزاده‌ حداد ، م.  و بهرامی ، ح . ع. (1393).  بررسی ارتباط غلظت ریز گرد با رطوبت سطحی و توزیع اندازه ذرات خاک با استفاده از شبیه ‌ساز متحرک فرسایش بادی در نواحی بیابانی غرب استان خوزستان.  کاوش‌ های جغرافیایی مناطق بیابانی.  سال  3، شماره 1، صفحه  183-167.
7.   Adib, A., Oulapour, M., &Chatroze, A. (2018). Effects of wind velocity and soil characteristics on dust storm generation in Hawr-al-Azim Wetland, Southwest Iran. Caspian Journal of Environmental Sciences, 16(4), 333-347.
8.   Bartalis, Z., Wagner, W., Naeimi, V., Hasenauer, S., Scipal, K., Bonekamp, H., ...& Anderson, C. (2007). Initial soil moisture retrievals from the METOP‐A Advanced Scatterometer (ASCAT).Geophysical Research Letters, 34(20).
9.   Carlson, T. (2007). An overview of the” triangle method” for estimating surface evapotranspiration and soil moisture from satellite imagery. Sensors, 7(8), 1612-1629.
10. Carrão, H., Russo, S., Sepulcre-Canto, G., & Barbosa, P. (2016). An empirical standardized soil moisture index for agricultural drought assessment from remotely sensed data. International journal of applied earth observation and geoinformation, 48, 74-84.
11. Chin, M., Diehl, T., Dubovik, O., Eck, T. F., Holben, B. N., Sinyuk, A., & Streets, D. G. (2009, September). Light absorption by pollution, dust, and biomass burning aerosols: a global model study and evaluation with AERONET measurements. In AnnalesGeophysicae (Vol. 27, No. 9, pp. 3439-3464).Copernicus GmbH.
12. Gao, Z., Xu, X., Wang, J., Yang, H., Huang, W., & Feng, H. (2013). A method of estimating soil moisture based on the linear decomposition of mixture pixels. Mathematical and Computer Modelling, 58(3-4), 606-613.
13. Ginoux, P., Prospero, J. M., Gill, T. E., Hsu, N. C., & Zhao, M. (2012). Global‐scale attribution of anthropogenic and natural dust sources and their emission rates based on MODIS Deep Blue aerosol products. Reviews of Geophysics, 50(3).
14. Huete, A. R. (1988). A soil-adjusted vegetation index (SAVI). Remote sensing of environment, 25(3), 295-309.
15. Ju, T., Li, X., Zhang, H., Cai, X., & Song, Y. (2018). Effects of soil moisture on dust emission from 2011 to 2015 observed over the Horqin Sandy Land area, China. Aeolian research, 32, 14-23.
16. Kerr, Y. H., Waldteufel, P., Richaume, P., Wigneron, J. P., Ferrazzoli, P., Mahmoodi, A., ...&Leroux, D. (2012). The SMOS soil moisture retrieval algorithm. IEEE transactions on geoscience and remote sensing, 50(5), 1384-1403.
17. Kim, H., Zohaib, M., Cho, E., Kerr, Y. H., & Choi, M. (2017). Development and assessment of the sand dust prediction model by utilizing microwave-based satellite soil moisture and reanalysis datasets in East Asian desert areas. Advances in Meteorology, 2017.
18. Munkhtsetseg, E., Shinoda, M., Gillies, J. A., Kimura, R., King, J., &Nikolich, G. (2016). Relationships between soil moisture and dust emissions in a bare sandy soil of Mongolia. Particuology, 28, 131-137.
19. Namdari, S., Karimi, N., Sorooshian, A., Mohammadi, G., &Sehatkashani, S. (2018). Impacts of climate and synoptic fluctuations on dust storm activity over the Middle East. Atmospheric environment, 173, 265-276.
20. Namdari, S., Valizade, K. K., Rasuly, A. A., &Sarraf, B. S. (2016). Spatio-temporal analysis of MODIS AOD over western part of Iran.Arabian Journal of Geosciences, 9(3), 191.
21. O’Loingsigh, T., McTainsh, G. H., Tews, E. K., Strong, C. L., Leys, J. F., Shinkfield, P., & Tapper, N. J. (2014). The Dust Storm Index (DSI): A method for monitoring broadscale wind erosion using meteorological records. Aeolian Research, 12, 29-40.
22. Parinussa, R. M., Yilmaz, M. T., Anderson, M. C., Hain, C. R., & De Jeu, R. A. M. (2014). An intercomparison of remotely sensed soil moisture products at various spatial scales over the Iberian Peninsula. Hydrological Processes, 28(18), 4865-4876.
23. Pech, R. P., Davis, A. W., Lamacraft, R. R., &Graetz, R. D. (1986). Calibration of Landsat data for sparsely vegetated semi-arid rangelands. International Journal of Remote Sensing, 7(12), 1729-1750.
24. Petropoulis, G. P., Wooster, M. J., & Drake, N. J. (2006). Investigating the Performance of a Coupled SVAT/Model Remote Sensing Method to Derive Spatially Explicit Maps of Land Atmosphere Energy Fluxes. In Geophysical Research Abstracts (Vol. 634)
25. Ravi, S., &D’Odorico, P. (2005). A field‐scale analysis of the dependence of wind erosion threshold velocity on air humidity. Geophysical Research Letters, 32(21).
26. Rodell, M., Houser, P. R., Jambor, U. E. A., Gottschalck, J., Mitchell, K., Meng, C. J., ... &Entin, J. K. (2004). The global land data assimilation system. Bulletin of the American Meteorological Society, 85(3), 381-394.
27. Shafian, S., & Maas, S. (2015). Index of soil moisture using raw Landsat image digital count data in Texas high plains. Remote Sensing, 7(3), 2352-2372.
28. Tong, D. Q., Dan, M., Wang, T., & Lee, P. (2012). Long-term dust climatology in the western United States reconstructed from routine aerosol ground monitoring. Atmospheric Chemistry and Physics, 12(11), 5189-5205.
29. UNEP, W. (2001). IPCC Third Assessment Report ‘Climate Change 2001’.
30. Wang, J. X. (2015). Mapping the global dust storm records: Review of dust data sources in supporting modeling/climate study. Current Pollution Reports, 1(2), 82-94.
31. Xu, H. (2007). Extraction of urban built-up land features from Landsat imagery using a thematicoriented index combination technique. Photogrammetric Engineering & Remote Sensing, 73(12), 1381-1391.
32. Yang, Y., Guan, H., Long, D., Liu, B., Qin, G., Qin, J., &Batelaan, O. (2015). Estimation of surface soil moisture from thermal infrared remote sensing using an improved trapezoid method. Remote Sensing, 7(7), 8250-8270.
33.          Younis, S. M. Z., & Iqbal, J. (2015). Estimation of soil moisture using multispectral and FTIR techniques. The Egyptian Journal of Remote Sensing and Space Science, 18(2), 151-161.