تحلیل و پیش‌بینی روند رشد شهری و تأثیر آن بر کاربری اراضی با استفاده از سنجش‌ازدور و مدل CA-Markov ؛ مطالعه موردی: شهرهای مریوان، بانه و سقز

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش آموخته کارشناسی ارشد سنجش از دور و سیستم اطلاعات جغرافیایی، دانشکده علوم محیطی، مؤسسه آموزش عالی هراز، آمل

2 استاد گروه آبخیزداری، دانشکده منابع طبیعی، دانشگاه علوم کشاورزی و منابع طبیعی ساری

3 دکتری جغرافیا و برنامه ریزی شهری، دانشکده علوم انسانی، دانشگاه علوم کشاورزی و منابع طبیعی ساری

10.22131/sepehr.2020.44599

چکیده

امروزه رشد مناطق شهری و تأثیر آن بر کاربری اراضی در جهان و بخصوص در کشورهای درحال‌ توسعه به یک مسئله مهم زیست ‌محیطی در علوم محیطی و برنامه‎ ریزی شهری تبدیل ‌شده است. هدف مطالعه حاضر تحلیل و پیش‌بینی رشد شهرهای بانه، مریوان و سقز بر کاربری‌ اراضی در یک دوره‌ی 45 سال (1987 تا 2032) با استفاده از مدل CA-Markov است. در مطالعه حاضر بررسی و مدل‌سازی نقشه‎های کاربری اراضی و رشد نواحی شهری با استفاده از تصاویر لندست و با اعمال الگوریتم Maximum Likelihood  و مدل CA-Markov در نرم‌افزارهای ENVI5.3 و IDRISI TerrSet انجام شد. نتایج این مطالعه با دقت بالای 80 درصد نشان می‌دهد در دوره‎ی 1987 تا 2017  حدود  897/39 و 790/38 هکتار (در شهر مریوان) و 801 و 772/29 هکتار (در شهر بانه) به ترتیب از اراضی پوشش‌گیاهی و زمین‌های کشاورزی به نواحی شهری تبدیل‌ شده است اما این روند برای شهر سقز کمتر بوده و رشد این شهر بیشتر نواحی بایر را به میزان 1249/29 هکتار تحت تأثیر قرار داده‌است.  همچنین نتایج مدل CA-Markov برای سال 2032 نشان داد در دوره‌ی 2017 تا 2032 همانند دوره‌ی قبل رشد شهر بانه در جهت شمال شرق، شهر مریوان در جهت شرق و شهر سقز در چهار جهت خواهد بود. در این دوره رشد نواحی شهری منجر به تخریب 511/29 و722/70 هکتار (در شهر بانه) و 1080 و2402/01 هکتار (در شهر مریوان) به ترتیب از اراضی زمین‎های کشاورزی و نواحی بایر خواهد شد. از طرف دیگر رشد شهر سقز بیشتر اراضی بایر را به میزان 1511/46 هکتار تخریب خواهد کرد. بدیهی است یافته‌های این مطالعه نقش مؤثری در برنامه‌ریزی‌های آینده دارد چراکه با آگاهی از روند رشد این نواحی می‌توان جهات توسعه شهر را به جهات بهینه هدایت نمود و تخریب اراضی ناشی از رشد شهر و درنتیجه تأثیرات منفی تغییرات کاربری اراضی را به حداقل رساند.

کلیدواژه‌ها


عنوان مقاله [English]

Analysis and prediction of urban growth and its impact on land use using remote sensing and CA-Markov ; Case study: Marivan, Baneh and Saqqez cities

نویسندگان [English]

  • SHadman Darvishi 1
  • Karim Solaimani 2
  • Morteza Shabani 3
1 MSc. Graduated of remote sensing and Geographic Information Systems, Department of Environmental Sciences, Haraz Institute of Higher Education
2 Professor of watershed management, Department of natural resources, Sari agricultural sciences and Natural Resources University
3 Ph.D. in Geography and urban planning, Sari agricultural sciences and natural resources University, Sari, Iran
چکیده [English]

Extended Abstract
Introduction
 Urbanization is a continuous process and the spatial patternsof urban growth havealways played an important role in the transformation of human life throughout history. Urban growth has two dimensions: demographic and spatial, meaning that with increased urban population, the need for shelter increases and cities are faced with spatial growth. Expansion of cities in the spatial dimensions have several consequences,including changes in land use and land covers of areas surrounding cities.Land use change is currentlyone of the major concerns ofthe environmental approach, since land use changes in areas surrounding cities have led to changes in the economic structure of cities and the destruction of vegetation and agricultural lands as one of the main foundations of production in these areas. They have also seriously damaged other water resources, wildlife habitats, and resulted in the reduction of soil organic matter, changes in soil humidity and saltiness, increased energy consumption, increased urban heat islands, climate changes, as well as negative effects on the mental and physical health of urban residents. Nowadays, rapid growth in remote sensing technology and geographic information system, as well as the advancements in computer science and its application in environmental sciences and urban planning have created spatial modeling techniques such as Markov chain, Cellular Automata, intelligent neural networks and statistical models. Due to its dynamic nature, the capability of showing spatial distribution of land use changes, as well as its unique characteristics in modeling of natural and physical geographic featureson the ground and simpler adaptation with remote sensing data and GIS, a combination of Markov chain model and Cellular Automata are used as an important supporting toolfor decision making in urban planning and environmental sciences in many studies performedrecently.  Over the past few decades, the population of Iranhas increased from 27 million in 1955 to 79 million in 2016. And according to the 2016census, 74 percent of the population lives in urban areas. In recent years, the population of Kurdistan province has experienced a 1.42% (2011 to 2016)average annual growth rate (especially in Baneh, Marivan and Saghez), which isaround 0.18% more than the average annual growth rate of the country (1.24%). Investigating census data shows that Baneh, Marivan and Saqezhave experienced a higher urban growth rate as compared to other cities in the province, and thus monitoring this growth and predicting its negative effects on the surrounding land use seems crucial.Destruction of vegetation and agricultural lands not only results in climate change, but also directly affect the lives of residents in the region. Therefore, understanding the growth rate is necessary for properplanning and managementofthese areas.
 
Materials and Methodology
Images received from Landsat in 1987, 2002 and 2017 were downloaded from the US Geological Surveywebsite and used in the present study. Google Earth images, land useand topography maps, and ground control points (GCP) were also used to perform imagepreprocessing, classification operations, and accuracy assessment. The study area includesBaneh, Marivan and Saqqez cities, which have recently experienced a high level of population growth. Considering the impact of population growth on increased rate of construction and physical development of urban areas, it is therefore necessary to study urban growth. In order to reduce the city’s impact on land use in future, it is necessary to modelurban growth. Using these models, planners can guide the urban development back to the optimal and appropriate routes and minimize the destruction of the land use.Image pre-processing in the present research was performed in ENVI5.3 environment. Then, using Maximum Likelihood algorithm, the images were categorized into five classes of water, residential areas, vegetation, agriculture and open spaces. Then, the overall accuracy of the classification maps was assessed using ground control points. To predict the urban growth, CA-Markov model was used in the IDRISI TerrSet software.
 
Results and Discussion
Findings indicate that the classified images have an accuracy of above 80%, and thus, land use maps of the study areas are valid.Investigations shows that the growth inMarivan and Baneh has most severely affected vegetation and agricultural land use. In the time period of 1987 to 2017, 897. 39 and 801 hectares of vegetation in Marivan and Banehhave been transformed into urban areas, respectively.During the same time period, 790.38 hectares of agricultural land in Marivan and 772.29 hectaresinBanehhave changed into urban areas. It is also important to note that unlike Saqez, the degradation of vegetation and agricultural lands in Marivan and Banehwas more severe than bare lands. In other words, bare landsinSaqez were more severely affected (as compared to vegetation and agricultural land), and about 1249,29 hectares of bare lands have turned into urban areas, while only 121.50 hectares of vegetation, and 509.04 hectaresof agriculture lands haveexperienced such a change.Also, results of the CA-Markov model showed that the growth of Baneh and Marivan cities in the 2017-2032 period will be in the Northeast and East directions, respectively. Results also indicate that this urban growth will affect agricultural and bare landsmore significantly. It is predicted that about 511.29 hectares of agricultural lands and 722.70 hectares of bare lands (in Baneh city) and 1080 hectares of agricultural lands and 2402.101 hectares of bare lands (in Marivan city) will turn into urban areas in this time period.
 
Conclusion
Based on the findings, it can be concluded that planning urban growth inthe study areas should be performed in a way that vegetation and especially the surrounding agricultural lands are preserved, and the negative effects of land use changesare minimized. Also,plannerscan apply the results of the present study in their future plansto guide the development of Baneh, Marivan and Saqeztoward optimal ways and reduce land use degradation.

کلیدواژه‌ها [English]

  • Urban growth
  • Markov Chain
  • Cellular automata
  • Maximum Likelihood
  • Baneh
  • Marivan
  • Saqqez
1- خوش ‌گفتار، م، م، طالعی، م .1389. شبیه ‌سازی رشد شهری در تهران با استفاده از مدل مارکف، نشریه سنجش ‌از دور و GIS ایران، 2(2):34-17.
2- درویشی، ش، سلیمانی، ک، رشیدپور، م. 1398. تأثیر شاخص ‌های گیاهی و خصوصیات سطح شهری بر تغییرات دمای سطح زمین (مطالعه موردی‌: شهرستان سنندج )،نشریه سنجش ‌از دور و سامانه اطلاعات جغرافیایی در منابع طبیعی، 1(34): 35-17.
3- درویشی، ش، رشیدپور، م، سلیمانی، ک. 1398.  بررسی ارتباط تغییرات کاربری اراضی با دمای سطح زمین با استفاده از تصاویر ماهواره ‌ای مطالعة موردی:  شهرستان مریوان، نشریه جغرافیا و توسعه، 17(54): 162-143.
4- شمسی ‌پور، ع،ا، حیدری، س، باقری، ک. 1396. پایش روند تغییرات پوشش زمین در شهر کرمانشاه با استفاده از مدل CA-Markov، نشریه پژوهش ‌های جغرافیای برنامه ‌ریزی شهری، 5(3): 514-495.
5- صالحی، ن، اختصاصی، م،ر، طالبی، ع. 1398.  پیش ‌بینی روند تغییرات کاربری اراضی با استفاده از مدل زنجیـره مـارکوفCA-Markov ( مطالعه موری:  حوضه آبخیز صفارود رامسر)،نشریه سنجش ‌از دور و سامانه اطلاعات جغرافیایی در منابع طبیعی، 10(1):120-106
6- کیانی سلمی، ا، ابراهیمی، ع. 1397.  ارزیابی پوشش اراضی شهرکرد و پیش ‌بینی آینده آن با بهره ‌گیری از داده‌ های  دورسنجی و مدل CA-Markov، نشریه برنامه ‌ریزی فضایی، 8(1): 88-71.
7- کیانی، و، علیزاده شعبانی، ا، نظری سامانی،ع،ا. 1393. ارزیابی صحت طبقه‌بندی تصویر ماهواره IRS-P6 بااستفاده از پایگاه اطلاعاتیGoogle Earth  به ‌منظور تهیه نقشه پوشش/کاربری اراضی (مطالعه موردی: حوضه آبخیز طالقان)،فصلنامه علمی - پژوهشی اطلاعات جغرافیایی( سپهر)، 23(90): 59-51.
8- گلدوی ، س، محمدزاده، م، ماهینی، ع،ر، س، نجفی نژاد، ع. 1394. پیش ‌بینی الگوی رشد شهری با به ‌کار گیری مدل رگرسیون لجستیک در منطقه گرگان، نشریه ‌ی آمایش سرزمین،  7(1): 117-95.
9- مرکز آمار ایران، سرشماری عمومی نفوس و مسکن در سال ‌های  1365، 1375، 1385 و 1395،https://www.amar.org.ir.
10- وارثی، ح.،ع.  رجایی جزین و م.  قنبری.1391. تحلیلی بر عوامل خزش شهری و رشد فیزیکی شهر گناباد با استفاده از مدل ‌های آنتروپی و هلدرن، نشریه آمایش سرزمین، 4(6):100-79.
11- Abdullahi, S., Pradhan, B. 2018. Land use change modeling and the efect of compact city paradigms: integration of GIS‑based cellular automata and weights‑of‑evidence techniques, Environmental Earth Sciences, 77 (251): 2-15.
12-Aburas, M. M., Ming, HO. Y., Ramli, M. F., Ash’aari, Z. H. 2017. Improving The capability of an integrated CA-Markov model to simulate spatio-temporal urban growth trends using an Analytical Hierarchy Process and Frequency Ratio, International Journal of Applied Earth Observation and Geo information, 59: 65–78.
13- AminiParsa, V., Yavari, A. Nejadi, A. 2016.Spatio-temporal analysis of land use/land cover pattern changes in Arasbaran Biosphere Reserve: Iran, Modeling Earth Systems and Environment, 2(4): 1-13,
14- Berberoglu, S., Akın, A., Clarke, K. C. 2016. Cellular automata modeling approaches to forecast urban growth for Adana, Turkey: A comparative approach, Landscape and Urban Planning, 153:11–27.
15- Bhat, P. A., Shafiq,  M., Mir, A. A., Ahmed, A. 2017. Urban sprawl and its impact on landuse/land cover dynamics of Dehradun City, India, International Journal of Sustainable Built Environment, 6(2): 513-521.
16- Bowen, L., Cox, L. J., Fox, M. 1991. The Interface between Tourism and Agriculture. Journal of Tourism Studies, 2(2):43-54.
17- Cabral, P., Zamyatin, A. 2009. Markov Processes in Modeling Land Use and Land Cover Changes in Sintra-Cascais, Portugal, Dyna (Medellin, Colombia), 76(158): 191–198.
18- Celik, I. 2005. Land-use effects on organic matter and physical properties of soil in a southern Mediterranean highland of Turkey, Soil and Tillage Research, 83(2): 270–277
19- Cheng, J., Masser, I. 2003. Urban Growth Pattern Modeling: A Case Study of Wuhan City, PR China, Landscape and Urban Planning 62(4):199–217.
20-Clarke, K.C., Hoppen, S., Gaydos, L. 1997. A Self modifying Cellular Automaton Model of Historical Urbanization in the San Francisco Bay Area, Environment and Planning B:  Planning & Design, 24(2):247-261.
21- Deep, Sh., Saklani, A. 2014. Urban sprawl modeling using cellular automata, The Egyptian Journal of Remote Sensing and Space Sciences, 17(2):179-187.
22- Dube, T., Gumindoga, W., Chawira, M., 2014, Detection of land cover changes around LakeMutirikwi, Zimbabwe, based on traditional remote sensing image classification techniques, African Journal of Aquatic Science, 39(1): 89-95
23- Frumkin, H. 2002. Urban sprawl and public health, Public Health Report, 117(3): 201-207.
24- Galdavi, S., Mohammadzade, M., Salman Mahiny, A., NejafiNejad, A. 2013. Urban Change Detection Using Multi-temporal Remotely Sensed imagery (Case study: Gorgan Area, Northern Iran), Environment & Urbanization ASIA, 4(2): 339-348.
25- Glenn, L. D. C., Peet, R. K., Veblen, T.T. 1993. Plant Succession: Theory and Prediction; 1nd Edition, Springer Netherlands, London, 352 P.
26- Goldblatt, R., You, W., Hanson, H., Khandelwal, A. K. 2016. Detecting the Boundaries of Urban Areas in India: A Dataset for Pixel-Based Image Classification in Google Earth Engine, Remote Sensing, 8 (8):1-28.
27- Grimm, N. B., Grove, J. M., Picket, S.T.A., Redman, C. L. 2000.  Integrated approaches to long-term studies of urban ecological systems, Bioscience, 50 (7):  571–584
28- Guan, D. J., Li, H. F., Inohae, T., Su, W., Nagaie, T., Hokao, K. 2011. Modeling urban land use change by the integration of cellular automaton and Markov model, Ecological Modeling, 222 (20-22): 3761-3772.
29- Hendrik Prinz, J., Wu, H., Sarich, M., Keller, B., Senne, M., Held, M., Chodera, J. D., Schütte, Ch., Noé, F. 2014, Markov models of molecular kinetics: Generation and validation, The Journal of chemical physics, 134(17):1-23.
30 - Herold, M., Goldstein, N.C., Clarke, K.C. 2003. the Spatiotemporal Form of Urban Growth: Measurement, Analysis and Modeling, Remote Sensing of Environment, 86(3): 286-302.
31- Jazouli, A. E., Barakat, A., Khellouk, R., Rais, J., El Baghdadi, M. 2019. Remote sensing and GIS techniques for prediction of land use land cover change effects on soil erosion in the high basin of the OumErRbia River (Morocco), Remote Sensing Applications: Society and Environment, 13: 361-374
32- Malarvizhi, K., Vasantha Kuma, S., Porchelvan, P. 2016. Use of High Resolution Google Earth Satellite Imagery in Land use Map Preparation for Urban Related Applications, Procedia Technology, 24: 1835-1842.
33- Mather, P., Brandt, T. 2009 Classification methods for remotely sensed Data, Taylor& Francis publisher, 2nd Edition, London, 376 p.
34- Megahed, Y., Cabral, P., Silva, J., Caetano, M. 2015, Land Cover Mapping Analysis and Urban Growth Modelling Using Remote Sensing Techniques in Greater Cairo Region—Egypt, International Journal of Geo-Information, 4(3): 1750-1769.
35- Memarian, H., Balasundram, S. K., Bin Talib, J., Teh Boon Sung, Ch., MohdSood, A., Abbaspour, K. 2012. Validation of CA-Markov for Simulation of Land Use and Cover Change in the Langat Basin, Malaysia, Journal of Geographic Information System, 4(2): 542-554.
36- Omar, N. Q., Sanusi, S. A., M, Hussin, W. M.W., Samat, N., Mohammed, K. 2014. Markov-CA model using analytical hierarchy process and multi regression technique, 7th IGRSM International Remote Sensing & GIS Conference and Exhibition, 20: 1-17
37-Pal, S., Ziaul, S., 2017, Detection of land use and land cover change and land surface temperature in English Bazar urban centre, 20(1): 125-145
38- Pijanowskia, B.C., Brown, D.G., Shellitoc, B.A,.Manikd, G.A. 2002. Using Neural Networks and GIS to Forecast Land Use Changes: A Land Transformation Model, Computers, Environment and Urban Systems, 26(6): 553–575.
39- Pointius, R. G., 2000. Quantification Error versus location Error in comparison of categorical Maps, Photogrammetric Engineering & Remote sensing, 66(8): 1011-1016
40- Quintero, G. V., Moreno, R. S., García, M. P., Guerrero, F. V., Alvarez, C. P., Alvarez, A. P. 2016. Detection and Projection of Forest Changes by Using the Markov Chain Model and Cellular Automata, Sustainability, 8(3):1-13.
41- Rafiee, R. A., Mahiny, A. S., Khorasani, N. 2009. Assessment of changes in urban green spaces of Mashhad city using satellite data, International Journal of Applied Earth Observation and Geoinformation 11(6): 431-438.
42- Rajaei, S. A., Mansourian, H. 2017. Urban Growth and Housing Quality in Iran, Social Indicators Research, 131(2): 587–605
43- Richards. J. A., Xiuping, J .2006. Remote sensing Digital Image Analysis, An Introduction, 4th Edition Springer-Verlag Berlin Heidelberg, 439 p.
44-Shafizadeh Moghadam, H., Helbich, M. 2013. Spatiotemporal urbanization processes in the megacity of Mumbai, India: A Markov chains-cellular automata urban growth model, Applied Geography, 40(6): 140-149.
45 - Shalaby, A., Tateishi, R. 2007. Remote sensing and GIS for mapping and monitoring land cover and land-use changes in the Northwestern coastal zone of Egypt, Applied Geography, 27 (1):28–41.
46- Shi, Y., Sun, X., Zhu, X., Li, Y,. Mei, L. 2012. characterizing growth types and analyzing growth density
distribution in response to urban growth patterns in peri-urban areas of Lianyungang City, Landscape and Urban
Planning 105(4): 425-433.
47- Siddiqui, A., Siddiqui, A., Maithani, S., Jha, A. K.,  Kumar, P., Srivastav,  S. K. 2017.  Urban growth dynamics of an Indian metropolitan using CA Markov and Logistic Regression, The Egyptian Journal of Remote Sensing and Space Sciences, 21(3): 229-236.
48- Smits, P. C., Dellepiane, S. G., Schowengerdt, R. A. 1999. Quality assessment of image classification algorithms for land-cover mapping: a review and a proposal for a cost-based approach. International Journal of Remote Sensing, 20(8): 1461-1486.
49- Sophia, S, R., Ndambuki, J. M. 2017, Accuracy Assessment of Land Use/Land Cover Classification Using Remote Sensing and GIS, International Journal of Geosciences, 8(4): 611-622.
50- Sun, C., Wu, Z., Lv, Z., Yao, N., Wei, J. 2013. Quantifying different types of urban growth and the change
dynamic in Guangzhou using multi-temporal remote sensing data, International Journal of Applied Earth
Observation and Geoinformation, 21: 409-417.
51- SurabuddinMondal, M. D., Sharma, N., Garg, P. K., Kappas, M. 2016. Statistical independence test and validation of CA Markov land use land cover (LULC) prediction results, The Egyptian Journal of Remote Sensing and Space Sciences 19(2):259–272.
52- Thapa, R. B., Murayama, Y. 2012. Scenario based urban growth allocation in Kathmandu Valley, Nepal.
Landscape and Urban Planning, 105(1-2): 140-148.
53- Tilahun, A., Teferie, B. 2015. Accuracy Assessment of Land Use Land Cover Classification using Google Earth, American Journal of Environmental Protection, 2015; 4(4): 193-198.
54- Tilahun, A., Islam, Z. 2015. Google Earth for land use land cover change detection in the case of gishabbaysekela, west Gojjam, Amhara State, Ethiopia, International Journal of Advancement in Remote Sensing, GIS and Geography, 3(2): 80-87.
55- United Nations. 2012. World urbanization prospects. The 2011 Revision, Department of Economic and Social Affairs (UN DESA), New York, 302 p.
56- Wagrowski, D. M., Hites, R. A. 1997. Polycyclic aromatic  hydrocarbon accumulation in urban, suburban and rurual vegetation,  Environmental Science & Technology, 31(1): 279- 282
57- Wassenaar, T., Gerber, P., Verburg, P. H., Rosales, M., Ibrahim, M., Steinfeld, H. 2007. Projecting land use changes in the Neotropics: The geography of pasture expansion into forest, Global Environmental Change, 17(1): 86-104.
58- Wibowo, A., Osman Salleh, Kh.,  SitanalaFrans, F. Th. R., MulyoSemedi, J. 2016. Spatial Temporal Land Use Change Detection Using Google Earth Data, 2nd International Conference of Indonesian Society for Remote Sensing, IOP Conf. Series: Earth and Environmental Science 47(1): 1-11.
59- Yang, l., Fu, CH., Chen, H. 2017. Design and Simulation of Gannan Forest Change Based on CAMarkov Model, International Journal of Future Generation Communication and Networking.10(3):.21-30.
60 -Yeh, A. G. O., Li, X. 2002. Urban Simulation Using Neural Networks and Cellular Automata for Land Use Planning, Advances in Spatial Data Handling, 451-464.
61- Zhang, R., Tang, Ch., Ma, S., Yuan, H., Gao, L., Fan, W. 2011. Using Markov chains to analyze changes in wetland trends in arid Yinchuan Plain‖, China. Mathematical and Computer Modeling, 54(3-4): 924-930.