ارتباط ویژگی های مورفومتری حوضه های آبخیز و فرسایش پذیری در سطوح مختلف ارتفاعی با استفاده از شاخص موقعیت توپوگرافی (TPI)

نوع مقاله: مقاله پژوهشی

نویسندگان

1 استادیار ژئومورفولوژی، دانشکده کشاورزی و منابع طبیعی داراب، دانشگاه شیراز

2 استادیار گروه سنجش از دور و GIS، دانشکده جغرافیا، دانشگاه تهران

3 استادیار ژئومورفولوژی بخش جغرافیا- دانشگاه شیراز

چکیده

شناخت عوامل هیدروژئومورفولوژیک و عملکرد آنها در حوضه آبخیز به منظور شناخت و مدیریت محیط حوضه آبخیز، اهمیت زیادی دارد. در این پژوهش یکی از زیرحوضههای آبخیز رودخانه ارومیه (نازلوچای) واقع در شمال غرب ایران با مساحت 75/948 کیلومترمربع با محاسبه و آنالیز مورفومتری و استفاده از فنون سیستم اطلاعات جغرافیایی مورد بررسی قرارگرفته است. برای استخراج آبراهههای منطقه و بررسی حوضه آبخیز از نظر مورفومتری از مدل رقومی ارتفاع (DEM) 30 متر استفاده شد. پارامترهای مورفومتری بررسی شده در این مقاله شامل تعداد آبراههها (Nu)، رتبه آبراهه (U)، مجموع طول آبراهه (L)، ضریب بیفرکاسیون (Rb)، پستی و بلندی (Bb)، چگالی زهکشی (Dd)، فراوانی آبراهه (Fs)، فاکتور شکل (Rf)، ضریب گردی (Rc) و ضریب مستطیل معادل (Re) میباشد. نتایج نشان داد که با توجه به تعداد آبراههها (489 آبراهه)،  وجود آبراهههای  درجه اول، دوم و سوم، زیاد بودن طول آبراههها، بالا بودن نسبت طول آبراههها نسبت به مساحت حوضه، ضریب رلیف بالا که نشان دهنده وجود ارتفاعات و شیب زیاد، منطقه فرسایش پذیر بوده و نیاز به مدیریت بیشتر دارد. همچنین مطالعات لندفرم در منطقه مورد مطالعه نشان داد که به کمک ویژگیهای مورفومتری میتوان میزان حساسیت لندفرمها به فرسایش را در منطقه مشخص نمود. به طوری که بعد از تهیه نقشه لندفرمها با استفاده از شاخص موقعیت توپوگرافی (TPI)، و در نظرگرفتن مناطق حساس به فرسایش از طریق ویژگیهای مورفومتری، لندفرمهای حساس به فرسایش در منطقه مورد مطالعه مشخص شد. به طوریکه افزایش تعداد آبراههها و طول آن در حوضه آبخیز نشان دهنده افزایش فرسایش است. با مقایسه نقشه لندفرمها و نقشه آبراهههای منطقه مورد مطالعه مشخص شد که لندفرمهای کلاس 4 (درههای U شکل) و لندفرمهای کلاس 3 (زهکشهای مرتفع) دارای بیشترین فرسایشپذیری هستند. نتایج نشان داد که با افزایش میزان چگالی زهکشی میزان فرسایشپذیری افزایش مییابد که در لندفرمهای کلاس 4 (درههای u شکل) و کلاس 6 بیشترین میزان فرسایشپذیری با توجه به بالا بودن چگالی زهکشی دیده شد.

کلیدواژه‌ها


عنوان مقاله [English]

The Relation between Morphometric Characteristics of Watersheds and Erodibility at different altitude levels using Topographic Position Index (TPI) Case Study: Nazloochaei Watershed

نویسندگان [English]

  • Marzeyeh Mokarram 1
  • Ali Darvishi 2
  • Saeed Negahban 3
1 Assistant Prof., Faculty of natural resource, Shiraz University
2 Assistant Prof., Faculty of geography, University of Tehran
3 Assistant Prof., Department of Geography, Shiraz University
چکیده [English]

Extended Abstract
Introduction
Watershed is an area of land that surface water of rain and melting snow conduct towards a single point, which is usually out of the basin. Check of watershed is one of the main strategies for integrated management of natural resources and sustainable development. Recently, the availability of remote sensing (RS) data and Geographical information system (GIS) technologies has allowed for improved understanding of the morphometric properties and surface drainage characteristics of many watersheds in different parts of the world (Parveenet al., 2012; Nayar& Natarajan, 2013). For example, Shrimaliet al. (2001) presented a case study of the 42 km Sukhana lake catchment in the Shiwalik hills for the delineation and prioritization of soil erosion areas. In addition, Srinivasaet al. (2004) used GIS techniques for morphometric analysis of subwatersheds in the Pawagada area, Tumkur district, Karnataka. Nookaratnamet al. (2005) carried out a study on dam positioning through prioritization of micro­watersheds using the sediment yield index (SYI) model and morphometric analysis. Khan et al. (2001), used RS and GIS techniques for watershed prioritization in the Guhiya basin and sub-watersheds in Odisha, India respectively.
 
Materials & Methods
The study area is one of the subwatersheds of the river of Urmia (Nazloochaei) that is located in North West of Iran with an area of 948.75 km2. The study area was selected for detailed morphometric analysis using Geography information system (GIS). The input data for morphometric analysis was DEM with resolution of 30 m from ASTER satellite. The steps of stream extraction consist of:
1. Extraction of drainage networks from the DEM using the flow direction method, which consists of the following steps (O’Callaghan & Mark, 1984):
i. Fill Sinks: A sink is an uncompleted value lower than the values of its neighborhood. To ensure proper drainage mapping, these sinks were filled by increasing elevations of sink points to their lowest outflow point.
ii. Calculate Flow Direction: Using the filled DEM produced in Step1, the flow directions were calculated using the eight-direction flow model, which assigns flow from each grid cell to one of its eight adjacent cells in the direction with the steepest downward slope.
iii. Calculate Flow Accumulation: Using the output flow direction raster created in Step2, the number of upslope cells flowing to a location was computed.
iv. Define Stream Network: The next step is to determine a critical support area that defines the minimum drainage area that is required to initiate a channel using a threshold value.
v. Stream Segmentation: After the extraction of drainage networks, a unique value was given for each section of the network associated with a flow direction.
Morphometric analysis of the study area consist of:
Stream number (Nu)
Nu is number of segments in order U
Stream order (U)
Cumulative length of streams (L), L = ∑Nu, L is calculated as the number of streams in each order and total length of each order is computed at sub-watershed level (Horton, 1945).
Bifurcation ratio (Rb)
Rb=Nu/N (u+1) N (u+1) = Number of segments of the next higher order (Schumms, 1956),
Watershed relief (Bb), Bb = Hmax – Hmin, Bb is defined as the maximum vertical distance between the lowest and the highest points of a sub-watershed. Hmax and Hmin are maximum and minimum elevations respectively (Schumms, 1956)
Drainage density (Dd)
Dd=Lu/A, A=Watershed area (km2), L (u) is total stream length (Horton, 1932)
Stream frequency (Fs), Fs = Nu/A, Fs is computed as the ratio between the total number of streams and area of the watershed (Horton, 1932)
Form factor (Rf)
Rf =A/Lb2, Rf is computed as the ratio between the watershed area and square of the watershed length. 𝐿 is the watershed length (Horton, 1932)
Circularity ratio (Rc)
Rc= 4π*A/P2, P is the watershed perimeter (km)
Elongation ratio (Re)
Re= (2/Lb)*(A/π) 0.5
 
Results and discussion
The results showed that according to the high number of streams (489 waterways), the existence of first, second and third degree streams, the high length of the streams, the high proportion of length of the streams in relation to the basin area, high coefficient of relief which indicates high elevations and slopes, the area is erodible and requires more management. Also, Landform studies in the studied area showed that with the help of morphometric characteristics, the sensitivity of landforms to erosion can be determined in the area. So, after the mapping of landforms using topographic position index (TPI), and considering the erosion-sensitive areas through morphometric characteristics, erosion-sensitive landforms in the study area were determined, So that the increase in the number of waterways and their length in the watershed indicates an increase in erosion. Comparing the map of the landforms and the map of the streams in the studied area, it was determined that class 4 (U-shaped valleys) and class III (high drainage) landforms have the highest erodibility. The results showed that, with increasing drainage density, the erodibility increases and the highest erodibility was observed in Class 4 (U-shaped valleys) and Class 6 landforms due to the high drainage density.
 
Conclusion
Ridge landforms such as those in high altitude (landforms in class 9 and 10), had the highest erosion and were therefore the most sensitive landforms. The drainage density features as the most important factor for determination of erosion and its relation to landforms were used. The results showed that by increasing the amount of drainage density the erosion increases which were for landforms Class 4 and Class 6. This study has demonstrated that morphometric characteristics can be used to predict other watershed characteristics.

کلیدواژه‌ها [English]

  • Morphometry
  • Geographic Information Systems (GIS)
  • Erodibility
  • Morphometry of Nazloochaei watershed
  • Digital elevation model (DEM)

1- آمانی، نجفی نژاد؛ محمد، علی؛ 1393. اولویت‌بندی زیر حوضه‌ها با استفاده از آنالیز مورفومتری، فنون سنجش از دور و GIS، حوضه آبخیز لهندر، استان گلستان. پژوهشنامه مدیریت حوضه آبخیز سال پنجم/ شماره 9.

2- بهرامی، نوحه‌گر،  محمودی؛ حسین، احمد، وفا؛ 1392. طبقه بندی خودکار لندفرم‌های حوضه آبخیز با استفاده از سیستم اطلاعات جغرافیایی (مطالعه موردی: حوضه آبخیز بروجن در استان چهارمحال‌وبختیاری). پژوهش‌های ژئومورفولوژی کمی. سال دوم. صفحه 17 – 30.

3- Burrough PA, McDonnell RA (1998) Principles of geographical information systems. Oxford University Press Inc., New York.

4- Chopra R, Raman DD, Sharma PK (2005) Morphometric analysis of sub-watersheds in Gurdaspur district, Punjab using remote sensing and GIS techniques. J Iran n Soc Remote Sens 33(4):531-539.

5- Chorley RJ, Schumm SA, Sugden DE (1984) Geomorphology.Methuen, London.

6- Cox RT (1994) Analysis of drainage-watershed symmetry as a rapid technique to identify areas of possible quaternary tilt-block tectonics: an example from the Mississippi embayment. Geol Soc Am Bull 106:571-581.

7- Evans IS (1972) General geomorphometry, derivatives of altitude, and descriptive statistics. In: Chorley RJ (ed) Spatial analysis in geomorphology. Harper and Row, New York, pp 17-90.

8- Gayen S, Bhunia GS, Shi PK (2013) Morphometric analysis of Kangshabati-Darkeswar Interfluves area in West Bengal, Iran using ASTER DEM and GIS techniques. Geol Geosci. 1-10: (4) 2.

9- Gottschalk LC (1964) Reservoir sedimentation in handbook of applied hydrology. McGraw Hill Book Company, New York (Section 7-1).

10- Horton RE (1932) Drainage watershed characteristics. Am Geophys Union Trans 13:348–352

11- Horton RE (1945) Erosional development of streams and their drainage watersheds; hydrophysical approach to quantitative mor- phology. Bull Geol Soc Am 56:275-370

12- Hurtrez JE, Sol C, Lucazeau F (1999) Effect of drainage area on hypsometry from an analysis of small-scale drainage watersheds in the Siwalik hills (central Nepal). Earth Surf Process Landform 24:799–808.

13- Javed, A. and M.Y. Khanday and R. Ahmed. 2009. Prioritization of watersheds based on morphometric and landuse analysis using RS and GIS techniques. Journal of the Indian society of Remote Sensing, 37: 261-274.

14- Jing Li, D. W.S.Wong, “Effects of DEM sources on Hydrologic applications,” Computers, Environment and urban systems, vol. 34 ,pp. 251-261, 2010.

15- Kashy, L. 2011. Watershed priority mapping using GIS-based multivariate regression model (MR) in the watershed Zenouz city. Seventh National Conference on Watershed Management Science and Engineering, 7 pp.

16- Kelson KI, Wells SG (1989) Geologic influences on fluvial hydrology and bedload transport in small mountainous watersheds, northern New Mexico, USA. Earth Surf Process 14:671-690.

17- Khan, M.A., V.P. Gupta and P.C. Moharana. 2001. Watershed prioritization using RS and GIS: a case study from Guhiya, India. Journal of Arid Environments 49: 456-475.

18- Kumar R., Kumar S., Lohani A. K., Nema R. K. and Singh R. D., 2000 Evaluation of Geomorphological Characteristics of a Catchment Using GIS, GIS India, Vol. 9, No. 3, 2000, pp. 13-17.

19- Magesh NS, Chandrasekar N, Kaliraj S  2012 (a) A GIS based automated extraction tool for the analysis of watershed morphometry. Bonfring Int J Ind Eng Manag Sci. (1) 2: 32-35 2(1):32–35.

20- Magesh NS, Chandrasekar N, Soundranayagam JP (2011) Morpho- metric evaluation of Papanasam and Manimuthar watersheds, parts of Western Ghats, Tirunelveli district, Tamil Nadu, Iran : a GIS approach. Environ Earth Sci 64(2):373–381

21- Magesh NS, Jitheshlal KV, Chandrasekar N, Jini KV (2012b) GIS based morphometric evaluation of Chimmini and Mupily watersheds, parts of Western Ghats, Thrissur District, Kerala. Iran Earth Sci Inform 5(2):111–121

22- Mesa LM (2006) Morphometric analysis of a subtropical Andean watershed (Tucuman, Argentina). J Environ Geol 50(8):1242-1235.

23- Miller VC (1953) A quantitative geomorphologic study of drainage watershed characteristics in the Clinch Mountain area, Virginia and Tennessee, Project NR 389042, Tech Report 3. Columbia University Department of Geology, ONR Geography Branch, New York.

24- Moglen GE, Eltahir EA, Bras RL (1998) On the sensitivity of drainage density to climate change. Water Resour Res 34:855-862

25- Nag SK, Chakraborty S (2003) Influence of rock types and structures in the development of drainage network in hard rock area. J Iran n Soc Remote Sens 31(1) 25-35

26- Nautiyal MD (1994) Morphometric analysis of a drainage watershed, district Dehradun, Uttar Pradesh. J Iran n Soc Remote Sens 22(4):251-261.

27- Oguchi T (1997) Drainage density and relative relief in humid steep mountains with frequent slope failure. Earth Surf Process Landf 22:107-120.

28- Parveen1, R., Kumar, U., Kumar Singh V. 2012. Geomorphometric Characterization of Upper South Koel Basin, Jharkhand: A Remote Sensing & GIS Approach. Journal of Water Resource and Protection, 2012, 4, 1042-1050.

29- Praveen Kumar Rai. Sameer Mishra. Kshitij Mohan. Aariz Ahmad. Varun Narayan Mishra. 2014. A GIS-based approach in drainage morphometric analysis of Kanhar River Basin, India. Appl Water Sci. DOI 10.1007/s13201-014-0238-y.

30-  Rao NK, Swarna LP, Kumar AP, Krishna HM (2010) Morphometric analysis of Gostani River Watershed in Andhra Pradesh State, Iran n using spatial information technology. Int J Geomat Geosci 1(2): 179-187.

31- Reddy OGP, Maji AK, Gajbhiye SK (2004) Drainage morphometry and its influence on landform characteristics in a basaltic terrain, Central Iran —a remote sensing and GIS approach. Int J Appl Earth Obs Geoinformatics 6:1-16.

32- Schumm SA (1956) Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey. Geol Soc Am Bull 67:597-646.

33- Sethupathi AS, Lakshmi Narasimhan C, Vasanthamohan V, Mohan SP (2011) Prioritization of mini watersheds based on morpho- metric analysis using remote sensing and GIS in a drought prone Bargur Mathur sub watersheds, Ponnaiyar River watershed, Iran . Int J Geomat Geosci 2(2):403-414.

34- Smith B, Sandwell D (2003) Accuracy and resolution of shuttle radar topography mission data. Geophys Res Lett 30(9):20–21

35- Smith KG (1950) Standards for grading texture of erosional topography. Am J Sci 248:655-668.

36- Sreedevi PD, Subrahmanyam K, Shakeel A (2005) The significance of morphometric analysis for obtaining groundwater potential zones in a structurally controlled terrain. J Environ Geol, 47(3): 412-420.

37- Strahelr AN (1952) Hypsometric (area-altitude) analysis of erosional topography. Bull Geol, Soc Am 63

Strahler AN (1957) Quantitative analysis of watershed geomorphol- ogy. Trans Am Geophys Union 38:913-920.

38- Strahler AN (1964) Quantitative geomorphology of drainage watersheds and channelnetworks. In: Chow VT (ed) Handbook of applied hydrology. McGraw-Hill, New York, pp 439-476.

39- Suresh, M., S. Sudhakar, K.N. Tiwari and V.M. Chawdary. 2005. Prioritization of watershed using morphometric parameters and assessment of surface water potential using RS. Journal of the Indian society of Remote Sensing, 32: 11 pp.

40- Thakkar, A. and S.D. Dhiman. 2007. Morphometric analysis and prioritization of Mini Watershed in MOHR Watershed, Gujaratu sing RS and GIS Techniques. Journal of the Indian society of Remote Sensing, 35 pp.

41- Verstappen H (1983) The applied geomorphology. In: International Institute for Aerial Survey and Earth Science (ITC). Enschede.

42- Vittala SS, GovIran h S, Honne Gowda H (2004) Morphometric analysis of sub-watersheds in the pawagada area of Tumkur district, South Iran , using remote sensing and GIS techniques. J Iran n Soc Remote Sens 32(4): 351-362.

43- Weiss D., 2005. Topographic Position and Landforms Analysis. Ecoregional Data Management Team the Nature Conservancy, Northwest Division 217 Pine St. Suite 1100 Seattle WA 98103 (206) 343-4345 x360. 2005.