جریان های برگشتی، نوک هلالی های بزرگ و تپه های ساحلی فرسایشی

نوع مقاله: مقاله پژوهشی

نویسنده

دکتری ژئومورفولوژی دانشگاه تربیت مدرس

چکیده

تپه‌های ماسه‌ای در محدوده نوک هلالی‌های  بسیار بزرگ ساحلی (200 ‌متر در طول ساحل) در حال فرسایش هستند  که عامل ایجاد آن فعالیت جریان‌های برگشتی در این منطقه می‌باشد. ساحل در محدوده نوک هلالی‌های  بسیار بزرگ به باریک‌ترین حد خود می‌رسد. این مسئله به امواج پیشرو ناشی از طوفان‌های بزرگ و مدهای بلند امکان رسیدن به پنجه تپه‌های ساحلی و زیر بری آنها را فراهم ساخته که این عمل در نهایت موجب فرسایش تپه‌های ساحلی می‌شود. اندازه‌گیری‌ها و مشاهدات میدانی تلماسه‌ها، ساحل شنی و مورفولوژی جریان‌های برگشتی در طول 18 کیلومتر از خط ساحلی خلیج مونتری در کالیفرنیا انجام گرفته است. این بخش از خط ساحل ماسه‌ای خلیج، بر اثرگسترش تلماسه‌ها بیش از 40 متر بالا آمدگی پیدا کرده است.ارتفاع امواج در زیر دماغه به سمت مرکز خلیج، جایی‌که همگرایی امواج به دلیل شکست آنها بر روی کانیون زیردریایی خلیج مونتری صورت می‌گیرد، افزایش چشمگیری می‌یابد. گرادیان بزرگ ارتفاع موج در طول ساحل باعث ایجاد یک گرادیان ممتد و پیوسته در مقیاس مورفودینامیکی می‌شود. در نتیجه بخاطر قدرتمند بودن امواج برگشتی و نیز دهانه باریک خلیج در نزدیکی محل برخورد طبیعی امواج، سبب توسعه جریانات برگشتی در تمام طول ساحل گشته است.
تغییرات طولی ساحل ناشی از حجم تپه‌های در حال فرسایش با نوسانات طولی ساحل ناشی از نوک هلالی‌های خط ساحل دارای همبستگی قابل توجهی و در سطح اطمینان 95% می‌باشد. همچنین تغییرات طولی ساحل ناشی از نوک هلالی‌های خط ساحلی همبستگی بسیار زیادی با نوسانات طولی ساحل در محدوده جریانات برگشتی دارد که در سطح اطمینان 95% می‌باشد. بنابراین، می‌توان اظهار داشت که نوک هلالی‌های بسیار بزرگ در ارتباط با جریانات برگشتی بوده و موقعیت تپه‌های در حال فرسایش نیز مرتبط با محدوده نوک هلالی‌های  بسیار بزرگ می‌باشند.

کلیدواژه‌ها


عنوان مقاله [English]

Erosional coastal hills

نویسنده [English]

  • Maryam Jaberi
Tarbiat-e Modarres
چکیده [English]

Sand hills are formed by erosion in very large mega-cusps (200 meter along the coast). This erosion is caused by returning currents. In very large mega-cusps, coasts reach their narrowest limit. So progressive waves of huge storms and high tides can reach the claws of the coastal hills undercutting them, which finally results in coastal hills being eroded. Measurements and field observations of dunes, sandy beach and returning current morphology were performed in an 18 kilometer coast line of Monterey Bay in California. This part of sandy coast line is uplifted more than 40 meters due to the spread of sand dunes. Under the cape and toward the gulf center, waves converge due to their breakdown on the Monterey underground canyons and their height increase significantly. Large gradient of wave height in coast length creates a continuous gradient in morphodynamic scale. Thus, strong returning waves and narrow mouth of the bay have resulted in the development of returning currents throughout the coast.
With 95% confidence level, longitudinal coastal changes which happen due to the volume of eroding hills have a significant correlation with longitudinal changes occurring due to coast line cusps. Moreover, longitudinal changes in coasts caused by the cusps in the coast line has a very significant relation with longitudinal changes of the coast in the range of rip currents. Therefore, it is possible to say that very large cusps are related to rip currents and the position of eroding hills is also related to the range of mega-cusps.

کلیدواژه‌ها [English]

  • rip currents
  • mega-cusps
  • eroding coastal hills
  • Waves
  • morphodynamic
  • hot points

 

1- Bowen, A.J., Inman, D.L., 1969. Rip currents, 2: laboratory and field observations. J. Geophys. Res. 74, 5479-5490.

2- Brander, R.W., Short, A.D., 2001. Flow kinematics of low-energy rip current systems. J. Coast. Res. 17 (2) , 468, 481 .

3- Clark, R.A., Osborne, R.H., 1982. Contribution of Salinas River sand to the beaches of Monterey Bay, California, during the 1978 flood period: Fourier grain-shape analysis. J. Sediment. Petrol. 52 (3), 807 822.

4- Dingler, J.R., Reiss, T.E., 2001. Changes to Monterey Bay beaches from the end of the 1982 83 El Niño through the 1997 98 El Niño. Mar. Geol. 3029, 1 15.

5- Haller, M.C., Dalrymple, R.A., Svendsen, I.A., 2002. Experimental study of nearshore dynamics on a barred beach with rip currents. J. Geophys. Res 107 (C6). doi:10.1029/2001JC000955 14-1-21.

6-  Holland, K.T., Holman, R.A., Lippmann, T.C., Stanley, J., Plant, N., 1997. Practical use of video imagery in nearshore oceanographic field studies. IEEE J. Oceanic Eng. 22 (1), 81 92.

7-  Holman, R.A., 1986. Extreme value statistics for wave runup on a natural beach. Coast. Eng. 9, 527 544.

8-  Holman, R.A., Sallenger, A.H., 1985. Setup and swash on a natural beach. J. Geophys. Res, 90, 945, 953.

9- Holman, R.A., Symonds, G., Thornton, E.B., Ranasinghe, R., 2006. Rip spacing and persistence on an embayed beach. J. Geophys.Res. 111, C01006. doi:10.1029/2005JC002965.

10- Komar, P.D., 1971. Nearshore cell circulation of the formation of giant cusps. Geol. Soc. Amer. Bull. 82, 2643 2650.

11- Lippmann, T.C., Holman, R.A., 1990. The spatial and temporal variability of sand bar morphology. J. Geophys. Res. 95 (C7),11,575 11,590.

12- List, J.H., Farris, A.S., 1999. Large-scale shoreline response to storms and fair weather. Proceed. Coastal Sediments '99, Amer. Soc. Civil Eng., Reston, VA, pp. 1324 1338.

13- Lygre, A., Krogstad, H.E., 1986. Maximum entropy estimation of the directional distribution in ocean wave spectra. J. Phys. Oceanogr.16 (12), 2052 2060.

14- MacMahan, J., 2000. Hydrographic surveying from a personal watercraft. J. Surv. Eng. 127 (1), 12 24.

15- MacMahan, J., Reniers, A.J.H.M., Thornton, E.B., Stanton, T.P., 2004. Infragravity rip-current pulsations. J. Geophys. Res. 109, C01033 doi:10.1029/2003JC002068.

16-  MacMahan, J.H., Thornton, E.B., Stanton, T.P., Reniers, A.J.H.M.,2005. RIPEX observations of a rip current system. Mar. Geol.218 (1 4), 113 134.

17- MacMahan, J., Thornton, E.B., Reniers, A.J.H.M., 2006. Rip current review. J. Coast. Eng. 53 (2 3), 191 208.

18- Revell, D.L., Komar, P.D., Sallenger, A.H., 2002. An application of LIDAR to analyses of El Nino erosion in the Netarts Littoral Cell,Oregon. J. Coast. Res. 18 (4), 792 801.

19- Sallenger, A.H., Stockdon, H., Haines, J., Krabill, W.B., Swift, R.N.,Brock, J., 2000. Probabilistic assessment of beach and dune changes.Proc. 27th Int'l Conf. Coastal Eng., Sidney. ASCE, pp. 3035 3047.

20-  Sallenger, A.H., Krabill, W.B., Swift, R.N., Brock, J., List, J., Hansen,M., Holman, R.A., Manizade, S., Sontag, J., Meredith, A.,Morgan, K., Yunkel, J.K., Frederick, E.B., Stockdon, H., 2003.

21-  Seymour, R.J., 1998. Effects of El Niños on the West Coast wave climate. Shore Beach 666, 3 (3).

22- Shih, S.M., Komar, P.D., 1994. Sediments, beach morphology and sea cliff erosion within an Oregon Coast Littoral Cell. J. Coast. Res.10, 144 157.

23- Short, A.D. 1979 Three-dimensional beach stage model. J. Geol.553 571.

24- Short, A.D., 1999. Handbook of Beach and Shoreface Morhphodynamics.John Wiley and Sons, Ltd., New York, NY, p. 379.

25- Short, A.D., Brander, R.W., 1999. Regional variations in rip density.J. Coast. Res. 15 (3), 813 822.

26- Short, A.D., Hesp, P.A., 1982. Wave, beach and dune interactions in South Eastern Australia. Mar. Geol. 48, 259 284.

27- Symonds, G., Ranasinghe, R., 2000. On the formation of rip currents on a plane beach. Proc. 27th Int'l Conf. Coastal Eng., Sidney.

ASCE, pp. 468 481.

28- Thornton, E.B., Guza, R.T., 1981. Energy saturation and phase speeds measured on a natural beach. J. Geophys. Res. 8, 9499 9508.

29- Thornton, E.B., Sallenger, A.H., Conforto Sesto, J., Egley, L.A.,McGee, T., Parsons, A.R., 2006. Sand mining impacts on long-term erosion in southern Monterey Bay. Mar. Geol. 229 (1 2), 45.

30- U.S. Army Corps of Engineers 1985. Geomorphology Framework Report Monterey Bay. Prepared by Dingler, J.R., U.S. Geological Survey, CCSTWS 85-2.

31-Van Enckevort, I.M.J., Ruessink, B.G., Coco, G., Suzuki, K., Turner, I.L., Plant, N.G., Holman, R.A., 2004. Observations of nearshore crescentic sandbars. J. Geophys. Res. 109, C06028. doi:10.1029/ 2003JC002214.

32- Wright, L.D.1980 , Beach cut in relation to surf zone morphodynamics. Proc. 17 th International Conf. on Coastal Engineering. ASCE, pp. 978 996.

33- Wright, L.D., Short, A.D., 1984. Morphodynamic variability of zones and beaches: a synthesis. Mar. Geol. 70, 251 285.