نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری عمران-نقشه برداری گرایش سیستم های اطلاعات مکانی، دانشگاه صنعتی مالک اشتر

2 دانشیار، دانشگاه صنعتی مالک اشتر

3 دانشیار، دانشکده محیط زیست، دانشگاه تهران

4 استاد، گروه سیستم های اطلاعات مکانی (GIS)، دانشکده مهندسی نقشه برداری، دانشگاه صنعتی خواجه نصیرالدین طوسی

5 استادیار، دانشگاه صنعتی مالک اشتر

6 پژوهشگر، دانشگاه صنعتی مالک اشتر

چکیده

پدیدهزلزله،جزء سوانحطبیعیاستکههمهسالهخساراتجانی،مالیوزیستمحیطیفراوانیبرجای میگذارد. ایران به علت موقعیت لرزه خیزی و قرار گیری آن برروی کمربند زلزله، در برابر زمین لرزه بسیار آسیب پذیر می باشد. همچنین تعداد زیادی از مستحدثات قبل از تدوین معیارهای طراحی مقاوم در برابر زلزله ساخته شده اند و متأسفانه همچنان کیفیت ساخت و ساز در برخی موارد در کشور در حد مطلوب نمیباشد. از اینرو با توجه به رفتار مشکوک شبکهها نسبت به وقوع زلزلههای احتمالی، مباحث بررسی آسیب پذیری لرزهای زیرساختهای حیاتی از اهمیت ویژه ای برخوردار می باشد.
در مقالهی حاضر، مدلی ارائه شده که در آن، ابتدا تحلیل خطر منطقه مورد نظر (بر اساس 2 رابطه کاهندگی موجود برای کشور) صورت میگیرد، که با توجه به عدم قطعیتهای موجود در وقوع زلزله (شامل اندازه بزرگای زلزله، عمق کانونی و موقعیت کانون زلزله)، این عملیات بصورت تصادفی در هر بار انجام تحلیل انتخاب می‌‌گردد و پس از هر بار آنالیز تحلیل خطر خروجیهای ناشی از خطر لرزش زمین شامل مقادیر بیشینه شتاب، حداکثرسرعت و تغییرمکان زمین محاسبه میگردد. چنانچه منطقه دارای استعداد زمینلغزش یا روانگرایی باشد، میبایست خروجیهای ناشی از خطر شکست زمین شامل مقادیر تغییرمکانهای روانگرایی و زمینلغزش برای هر عارضه وارد مدل شوند. سپس از توابع آسیبپذیری لرزهای که برای هر 2 خطر لرزش زمین و شکست زمین برای شریانها در پایگاه داده مدل قرار داده شده، استفاده میگردد. در انتها براساس توابع موجود آسیبپذیری به تحلیل خسارت شبکه‌‌ها پرداخته میشود. تمامی این گامها برای یکبار آنالیز میباشد. از اینرو بر اساس شبیهسازی مونت کارلو، تمامی این عملیات بصورت 10هزار بار برای لحاظ نمودن تمامی عدمقطعیتها و حالات خرابی تکرار میشوند و از خروجیهای موجود در پایگاه داده، میانگینگیری انجام میشود تا تمامی حالات خرابی در نظر گرفته شود. به همین منظور باتوجه به حجم وسیع داده توصیفی و مکانی، از طرفی آنالیزهای مکانی زیاد بر روی دادهها و همچنین حجم بالای معادلات ریاضی برای تکرار عملیات، به کدنویسی در محیط Visual Studio با زبان برنامهنویسی C# با بهرهگیری از کتابخانههای .Net Framework و Arc Engine پرداخته شد که منجر به تولید یک سامانه نرمافزاری با به کارگیری یک پایگاه داده و با قابلیتهای تحلیل و استنتاج مکانی بر مبنای سیستمهای اطلاعات مکانی (GIS) گردید که میتواند مقادیر احتمالی خرابی کم، متوسط، وسیع و کامل هر شریان را به تفکیک در قالب نقشه و جدول برای هر عارضه برآورد نماید. در این مقاله بمنظور نمایش بهتر این پژوهش، مدل موجود برای شهر نیشابور، پیادهسازی و مورد تحلیل واقع گردید.

کلیدواژه‌ها

عنوان مقاله [English]

Providing Seismic Loss Estimation Model of Vital Infrastructure Based on Spatial Information System

نویسندگان [English]

  • Mohammad Eskandari 1
  • Mahdi Modiri 2
  • Babak Omidvar 3
  • Aliasghar Alesheikh 4
  • Mohammadali Nekooie 5
  • Ali Alidoosti 6

1 Ph.D student in GIS department of civil engineering surveying, Malek Ashtar University of Technology

2 Associate professore, Malek Ashtar University of Technology, Tehran, Iran

3 Associate professore, faculty of environment, University of Tehran, Tehran, Iran

4 Professor, department of GIS, faculty of geodesy and geomatics engineering K.N. Toosi University of technology, Tehran, Iran

5 Assistant professore, Malek Ashtar University of Technology, Tehran , Iran

6 Researcher, Malek Ashtar University of technology, Tehran, Iran

چکیده [English]

Abstract
The earthquake phenomenon is a natural disaster that causes many fatal, financial and environmental damages every year. Iran is extremely vulnerable to earthquakes due to its seismicity and its location on the earthquake belt. Also, a large number of facilities were built before the formulation of earthquake resistant standards and, unfortunately, the quality of construction in some cases in the country is not optimal. Therefore, considering the suspicious behavior of the networks regarding the occurrence of possible earthquakes, the issues of assessing the seismic vulnerability of critical infrastructure are of particular importance. In this paper, a model has been presented in which, first, the risk analysis of the area of interest (based on the two existing attenuation relations for the country) is carried out, which, given the uncertainties involving in the earthquake occurrence (including magnitude of earthquake, focal depth and position of the earthquake epicenter), this operation is randomly selected at each time of the analysis, and after each hazard analysis, the outputs resulting from the earthquake hazard including the maximum acceleration values, the maximum speed and the displacement of the ground are calculated. If the area has a landslide or liquefaction potential, then the outputs resulted from the earth fault risk, including the values of liquefaction and landslide displacements, should be introduced into the model for each feature. Then, seismic vulnerability functions are used which are placed on the model database for both ground shaking hazard and ground failure for the arteries. At the end, based on the existing vulnerability functions, the network damage analysis is dealt with. All these steps are for a single analysis. Therefore, based on the Monte Carlo simulation, all of these operations are repeated 10,000 times to include all uncertainties and failure states, and the outputs in the database are averaged to account for all failure states. For this purpose, due to the large volume of descriptive and spatial data, on the other hand, large spatial analysis of data and the high volume of mathematical equations for repetition of operations, coding in the Visual Studio environment with the C # programming language was done, using the Net Framework and Arc Engine libraries which led to the production of a software system using a database and with spatial analysis and deduction capabilities based on spatial information systems (GIS) that could assess the possible slight, moderate, extensive and complete failure rates of each artery separately in the form of maps and tables for each feature. In this paper, to better illustrate this research, the existing model for the city of Neyshabur was implemented and analyzed.

کلیدواژه‌ها [English]

  • Spatial Information Systems
  • Loss estimation
  • Infrastructure
  • Earthquake
  • Monte Carlo Simulation
1 - اسکندری، محمد، (1389)، «برآورد خسارت لرزه‌­ای خطوط لوله مدفون سوخت -  مطالعه موردی شهر کرمانشاه»، امیدوار، بابک، دانشکده محیط زیست، دانشگاه تهران.   
2 - افضلی، شریفی‌کیا، شایان؛ عباسعلی، محمد و سیاوش (1392)، «ارزیابی آسیب پذیری زیرساخت ها و سکونتگاه‌ها از پدیده فرونشست زمین در دشت دامغان»، دو فصلنامه‌ی ژئومورفولوژی کاربردی ایران، سال اول، شماره اول، بهار و تابستان 1392.
3 - بازگرد، علی، (1385)، «توسعه مدلی کارا برای ارزیابی خسارت لرزه‌­ای ساختمان­‌های شهر تهران با استفاده از GIS»، امیدوار، بابک، پایان‌­نامه کارشناسی ارشد، دانشگاه تهران.
4 - تفویضی، سدیدخوی، حسین خلوتی؛ میترا، احمد و  امیر، (1393)، «ارزیابی ریسک پذیری لرزه‌ای تجهیزات اصلی پست‌های انتقال نیرو فشار قوی برق واقع در شهر تهران»، بیست و نهمین کنفرانس بین‌المللی برق، تهران.
5 - حسنی، صافی، حسنی، میثم، محمد و نعمت، (1392)، «ارزیابی و تحلیل لرزه‌ای پست‌های فوق توزیع شبکه برق»، کنفرانس ملی مدیریت بحران و HSE در شریان‌های حیاتی، صنایع و مدیریت شهری، تهران.
6 - حسنی، نعمت، (1385)، «گزارش مرحله اول پروژه مطالعات آسیب‌­پذیری و مقاوم‌­سازی لرزه­‌ای شبکه برق تهران مرکز مطالعات بحران­‌های طبیعی در صنعت»، دانشگاه صنعت آب و برق.
7 - سلیمانی ملکان، محمود، (1391)، «آنالیز ریسک در تصفیه خانه آب به روش تحلیل سلسله مراتبی فازی (FAHP) مطالعه‌ی موردی تصفیه‌خانه‌های3 و4 شهر تهران»، جلالی، غلامرضا و رشیدی مهرآبادی، عبداله، پایان‌نامه جهت اخذ کارشناسی‌ارشد، دانشکده مهندسی عمران دانشگاه صنعت آب و برق (شهید عباسپور).
8 - فتاحی، رستمی مهربان، طالبیان، بحرودی، هالینگورث، والکر؛ مرتضی، سمیه، مرتضی، عباس، جیمز و ریچارد، (1388)، «بررسی فعالیت گسل نیشابور در استان خراسان»، مجله علوم زمین، بهار 90 ، سال بیستم، شماره 79 ، صفحه 55 – 60.
9 - محمودزاده، پیراسته، بهنام‌فر، تاجیک، تاجمیر ریاحی؛ امیر، سعید، فرهاد، توحید و امیر،‌ (1389)، «ارزیابی سریع آسیب پذیری لرزه‌ای ساختمان­‌های بنائی با معرفی روش جدید شاخص سازان»، انتشارات علم آفرین، اصفهان.
10. ALA, , (2005) “Guidelines for assessing the Performance of Oil and Natural Gas Pipeline Systems in Natural Hazard and Human Threat Events”, American Lifelines Alliance.
11.  Ang, A. H.-S.; Pires, J.A. and Villaverde, R. (1996). A model for the seismic reliability assessment of electric power transmission systems. Reliability Engineering and System Safety 51: 7-22.
12. Berberian , M. & Yeats, R., (1999),  Patterns of historical earthquake rupture in the Iranian Plateau, Bulletein of the Seismological Society of America, 89, 120-139.
13. EQE International, (1995), “EQE summary report  for The  1995 Kobe earthquake”, January 1995.
14. Federal Emergency Management Agency (FEMA), (1999), “Chapter 1, HAZUS99-SR2 Technical Manual, FEMA, Washington D.C.” .
15. Federal Emergency Management Agency (FEMA), (1999), “Chapter 8, HAZUS99-SR2 Technical Manual, FEMA, Washington D.C.” .
16. FEMA 224-25(ATC 25), (1991), “Seismic Vulnerability And Impact Of Disruption Of Lifelines In The Conterminous United States.”, Federal Emergency Management Agency, 8-0978.
17. FEMA - 225, (1992), “Inventory Of Lifelines In The Cajon Pass, California”, Federal Emergency Management Agency,., 09, 86-8
18. FEMA - 226, (1992), “Collocation Impacts On The Vulnerability Of Lifelines During Earthquakes With Applications To The Cajon  Pass, California.”, Federal Emergency Management Agency, 8-0988.
19. Ghodrati Amiri , G., Mahdavian, A., Manouchehri Dana, F., (2007) Attenuation Relationships for Iran, Journal of Earthquake Engineering, 11:4, 469-492, DOI:10.1080/13632460601034049.
20. LESSLOSS, (2007), “Prediction of Ground Motion and Loss Scenarios for Selected Infrastructure Systems in European Urban Environments”, Ed.: Faccioli E. Risk Mitigation for Earthquakes and Landslides.
21. Lewis Ted G., (2006). Critical Infrastructure Protection in Homeland Security, Defending a Networked Nation. A John Wiley & Sons, INC., Publication.
22. O’Rourke, T.D. and Tawfik, M.S., (1983), “Effects of Lateral Spreading on Buried Pipelines During the1971 San Fernando Earthquake”, Proceedings of Symposium on Lifeline Earthquake Engineering, Earthquake Behavior and Safety of Oil and Gas Storage Facilities, Buried Pipelines and Equipment, PVP-Vol. 77, The American Society of Mechanical Engineers.
23- Pinto P.E., Cavalieri F., Franchin P., Vanzi I. , Pitilakis K. (2010), D3.3-Fragility functions for electric power system elements, Deliverable of SYNER-G EC project.
24- RISK-UE, (2003), “An advanced approach to earthquake risk scenarios with applications to different European towns, WP4: Vulnerability of current pipelines”, European Project.
25- Scawthorn C, Cowell A, and Borden F.(1997), Fire-related Aspects of the Northridge Earthquake, Report by EQE International for the National Institute of Standards and Technology, SanFrancisco.
26- Strand, L. C., (1994), “Performance of Gas Shutoff Valves and the Occurrence of Gas-Related Fires and Gas Leaks During the Northridge Earthquake, with an Update on Legislation”, Proc. of the NEHRP Conf. and Workshop on Research on the Northridge, California Earthquake of January 17.
27- Thoft-Christensen, P. and Muratsu, Y. (1986). Application of Structural Systems Reliability Theory. Berlin, NY: Springer-Verlag.
28- Zaré, M. and Bard, P-Y. , (1999) Attenuation of Peak Ground Acceleration in Iran, 5th National Conference, France.