نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد دانشکده مهندسی نقشه برداری و اطلاعات مکانی، پردیس دانشکده های فنّی دانشگاه تهران، تهران، ایران

2 دانشیار دانشکده مهندسی عمران، آب و محیط زیست، دانشگاه شهید بهشتی، تهران، ایران

چکیده

در چند دهه اخیر کاداستر بهعنوان بستری مناسب برای انجام مشارکت در زمینه مدیریت زمین و داراییهای آن در سطح جهانی تبدیل شده است. کاداستر سهبعدی برای استفاده از منابع کمیاب زمین بهعنوان پایه محکمی برای یکپارچهسازی و اتصال اطلاعات در قالب سیستمی کامل و کارآمد برای نگهداری اطلاعات بوده و بهعنوان عنصری کلیدی جهت دستیابی به موفقیتهای حقوقی و مدیریتی املاک در آینده مطرح میشود. هدف تحقیق حاضر ارزیابی روش فتوگرامتری مبتنی بر پهپاد بدون استفاده از نقاط کنترل زمینی بهمنظور تهیه مدلهای سهبعدی کاداستر میباشد. اطلاعات مورد نیاز از منطقه مورد مطالعه توسط پهپاد فتوگرامتری ایبی پلاس اخذ و برای بهدست آوردن مقادیر دقیق المانهای توجیه خارجی تصاویر از واحد اندازهگیری اینرشیال و گیرنده سامانه ماهوارهای ناوبری جهانی با استفاده از تکنیکهای تعیین موقعیت آنی و پسپردازش کینماتیک بهره گرفته شده است. پردازش تصاویر در دو مرحله توسط نرمافزارهای Pix4dmapper و Metashape صورت گرفته و از نرمافزارهای ArcGIS.v10 و SketchUp بهمنظور تولید مدلهای سهبعدی و بصریسازی استفاده شده است. برای اثبات دقت هندسی مثلثبندی مجموعاً از 8 نقطه کنترل زمینی در منطقه بهعنوان نقاط چک استفاده و مقدار بیشینه خطای جذر میانگین مربعات 3.12 در مؤلفه (X)، 2.86 در مؤلفه (Y) و 3.96 سانتیمتر در مؤلفه (Z) در دو مرحله مشاهده گردیده است. در ادامه برای ارزیابی نهایی مدلهای سه بعدی از 32 نقطه نمونه بهعنوان نقاط چک استفاده شد و نتایج حاصل از برازش دادههای مشاهداتی بر دادههای مرجع نشاندهنده خطای جذر میانگین مربعات در مؤلفههای مسطحاتی (X,Y) بهترتیب 0.19 و 0.13 متر و مؤلفه ارتفاعی (Z)، 0.39 متر که حاکی از دقت بالای این روش بهمنظور تهیه مدلهای سهبعدی کاداستر میباشد.

کلیدواژه‌ها

عنوان مقاله [English]

3D cadastre implementation using UAV-based photogrammetry method without ground control points (GCPs)

نویسندگان [English]

  • Amir Hosein Shokri 1
  • Saied Sadeghian 2

1 Geomatics College of the National Cartographic Center, Tehran, Iran

2 Associate professor, ShahidBeheshti University, Tehran, Iran

چکیده [English]

Introduction
Recently, cadastre has become a suitable platform for global partnership in management of land and its assets. Due to ever- increasing population, spatial organization of citiesis considered to be one of the most important issues in national development planning. This indicates the necessity of using 3D land information systems since theenvironment, quality, ownership and other benefits of lands do not only change horizontallyany moreand height is also a decisive and vital factor.Therefore, 3D cadastreis used as abasis for integrating information into a complete and efficient information storage system. This system is usedtomanage scarce land resources and plays a key role in achieving future legal and managerial success in the field ofreal-estate. Designing and implementing a system capable of displaying the third dimension (height) is very complex. Common methods of producing 3D cadastral models include land surveying, classical aerial photogrammetry, high-resolution satellite imagery, and so on. Recently, the advent of drones has provided a suitable platform for large-scale cadastral mapping. Collecting high resolution images, processing withstructure from motion(SFM) method, multi-stereo vision (MSV), and dense 3D point cloud with a high resolution of about a few centimeters are the main advantages of these tools. Recentstudies in this field indicate high capabilities of UAV-based photogrammetry method for the production and updating of cadastral maps.
 
Materials and Methods
Due to the applied nature of the present study, guideline for the spatial information production using photogrammetric method published by Tehran Municipality and other Surveying and Mapping guidelines published by the National Cartographic Center of Iran have been used to produce 3D cadastral modeland reach relatively real results. The study area is Khosban village in MiyanTaleqan rural district, in the central district of Taleqan County, Alborz Province, Iran. Necessary information was collected using an eBee Plus survey drone with a SODA camera (designed for professional photogrammetric applications). Besides, exterior orientation parameters were measured using the preciseinertial measurement unit (IMU), global navigation satellite system (GNSS) Antenna withreal-time kinematic (RTK) and post-processing kinematic (PPK) techniques and triangulation was performed using these parameters. To increase the accuracy, reduce hidden areas and achieve more accurate 3D models, 75%longitudinal and transverse overlappingwere considered for the images. Image processing was performed using Pix4dmapper and Metashape software and products such as orthomosaic, dense 3D point cloud, and digital surface model were produced. To prove thegeometric accuracy of triangulation, 8 ground control points were used, and32 checkpoints were also used for the final evaluation of 3D models.
 
Results and Discussion
3D cadastre implementation was performedin the present paperusing UAV based photogrammetry without any ground control points. According to the results of triangulation, the maximum root mean square error in the X-component was reported 3.21 cm, the Y-componentwas reported2.86 cm, and the Z-component was reported 3.96 cm using Pix4dmapper and Metashape software. Moreover, 32 sample checkpoints were used for the final evaluation of the 3D models and data collected from these points were compared with the reference data. Results indicated the occurrence of maximum root mean square error in the horizontal components (X, Y) of 0.2 and 0.21 meter respectively, and 0.27 meter in the height component (Z). A correlation coefficient of about 1 represents high geometric accuracy of the 3D models produced using UAV based photogrammetry.
 
Conclusion
3D cadastre can be used as a tool for improving land management and related issues. Due to structural complexity and ownership issues,most developed countrieshave not yet fully implemented 3D cadastre. However, these countries are always looking for ways to achieve such a system. So far in our country, the issue of 3D cadaster has only been pursued in academic studies and no practical stephas been taken to implement this system. Unfortunately, technical dimension and preparation of 3D models are only a part of 3d cadastre and legal issues occurring due to insufficient understanding of the third dimensionand its complexity alsolead to failure in the implementation of 3D cadaster. 

کلیدواژه‌ها [English]

  • 3D Cadastre
  • UAV-based photogrammetry
  • 3D modeling
  • Urban management
1- باغانی، ولدان زوج، مختارزاده؛ امین، محمد‌جواد، مهدی، (1394) «نقشه های کاداستر بزرگ مقیاس از مناطق شهری با استفاده از روش فتوگرامتری پهپاد» اولین کنفرانس ملی مهندسی فناوری اطلاعات مکانی، تهران، دانشکده مهندسی نقشه‌برداری دانشگاه صنعتی خواجه نصیر‌الدین طوسی.
2- پورکمال، محمد، (1377). «مقدمه‌ای بر شناخت کاداستر و کاربردهای آن» مرکز اطلاعات جغرافیایی شهر تهران.
3- خوش‌برش ماسوله، صادقیان؛ مهدی، سعید، (1397) «پیاده‌سازی کاداستر سه‌بعدی شهری بر مبنای تصاویر هوایی با قابلیت مدیریت املاک در کلان‌شهر تهران» فصلنامه علمی- پژوهشی اطلاعات جغرافیایی «سپهر»، 27 (107)، 25-40.
4- زین‌الدینی، صادقیان، سرکارگر اردکانی؛ محمد، سعید، علی، (۱۳۹۳). «بررسی قابلیت هندسی تصاویر پهپاد با استفاده از مدل‌های فیزیکی، تجربی و هوش مصنوعی» نشریه علمی پژوهشی علوم و فنون نقشه‌برداری. ۳ (۴)، ۹۱-۱۰۲.
5- سادات احمدی، صادقیان؛ مریم، سعید، (1394). «ارزیابی تصاویر پهپاد در تهیه نقشه‌های کاداستر» اولین کنفرانس بین‌المللی زمین، فضا و انرژی پاک، اردبیل، دانشگاه محقق اردبیلی.
6- شاهدی، جلالی؛ رحمت‌الله، سید‌مهدی، (1396). «تأثیر کاداستر در جلوگیری از اشتباهات ثبتی» فصلنامه مطالعات علوم اجتماعی، 3 (3)، 104-118.
7- شکری، صادقیان؛ امیر‌حسین، سعید، (1397). «پیشرفت‌های نوین پهپاد در نقشه‌برداری و مدل‌سازی سه‌بعدی» کنفرانس ملی تحقیقات بنیادین در عمران، معماری و شهرسازی، تهران، موسسه آموزش عالی اوج.
8- صادقیان، شکری؛ سعید، امیر‌حسین، (1397). «پیشرفت‌های نوین پهپاد در کاربردهای دفاعی و عمرانی» سیزدهمین کنگره انجمن جغرافیایی ایران، تهران، انجمن جغرافیایی ایران.
9- صادقیان، سعید، (1376). «کاداستر؛ اجزا، انواع و روش‌ها» فصلنامه علمی- پژوهشی اطلاعات جغرافیایی «سپهر»، 6 (23)، 54-61.
10- Agus, R., Doling, J., Lee, D., (2002). “Housing Policy Systems in South and East Asia” Palgrave Macmillan UK.
11- Aien, A. (2013). “3D Cadastral Data Modelling” Ph.D. thesis, Centre for Spatial Data Infrastructures and Land Administration, Department of Infrastructure Engineering, School of Engineering, The University of Melbourne, Victoria, Australia, 474 pp.
12- Biljecki F., Ledoux H., Stoter J., (2017). “Generating 3D city models without elevation data. Computers” Environment and Urban Systems, 64, 1–18.
13- Choon, T. L., & Kam Seng, L. (2013). “Towards a Malaysian Multipurpose 3D Cadastre based on the Land Administration Domain Model (LADM) – An Empirical Study” 5th Land Administration Domain Model Workshop, Kuala Lumpur.
14- Colomina, I., Molina, P., (2014). “Unmanned aerial systems for photogrammetry and remote sensing: A review” ISPRS Journal of Photogrammetry and Remote Sensing. 92, 79–97.
15- Crommelinck, S., Bennett, R., Gerke, M., Nex, F., Yang, M.Y., Vosselman, G. (2016). “Review of automatic feature extraction from high-resolution optical sensor data for UAV-based cadastral mapping” Remote Sens. 8 (8), 689.
16- Crommelinck, S., Yang, M.Y., Koeva, M., Gerke, M., Bennett, R., & Vosselman, G. (2017). “Towards Automated Cadastral Boundary Delineation from UAV Data” CoRR, abs/01813/1709.
17- Crommelinck, Sophie & Bennett, Rohan & Gerke, Markus & Yang, Michael Ying & Vosselman, George. (2017). “Contour Detection for UAV-Based Cadastral Mapping” Remote Sensing. 9. 171. 3390/10/rs9020171.
18- Crommelinck, Sophie & Höfle, Bernhard & Koeva, Mila & Yang, Michael Ying & Vosselman, George. (2018). “Interactive Boundary Delineation from UAV Data” IV-2. 81-88. 5194/10/isprs-annals-IV-2-81.
19- Hasegawa H., (2018). “Applicability of Social Tenure Domain Model and 3D modeling by UAV photogrammetry to mountainous region in Indonesia” FIG Congress 2018, embracing our smart world where the continents connect: enhancing the geospatial maturity of societies Istanbul, Turkey, May 6–11.
20- ISO (2011), ISO 19152:2012, Geographic Information Land Administration Domain Model, edition 1. ISO, Geneva.
21- Kalantari, M., et al. (2008). “Spatially referenced legal property objects” In Land Use Policy, 173-181.
22- Kedzierski, M., Fryskowska, A., Wierzbicki, D., & Paulina, D. (2015). “Cadastral Mapping Based on UAV Imagery” Yucatan, Mexico: 15th International Scientific and Technical Conference “From imagery to map: digital photogrammetric technologies”.
23- Khoshboresh Masouleh, M., Sadeghian, S., (2019). “Deep learning-based method for reconstructing three-dimensional building cadastre models from aerial images” Journal of Applied Remote Sensing 13(2), 024508.
24- Koeva M., Muneza M., Gevaert C., Gerke M., Nex F., (2016). “Using UAVs for map creation and updating. A case study in Rwanda” Survey Review. 50 (361), 312-325.
25- Lukitasari F., (2017). “The Usability of Unmanned Aerial Vehicle (UAV) for Land Cadastral Registration in Indonesia” Bartholomeus H., Wageningen University and Research Centre, Laboratory of Geo-Information Science and Remote Sensing.
26- M., Fryśkowska A., Wierzbicki D., Deliś P., (2015). “Cadastral Mapping Based on UAV Imagery” 15th International Scientifi c and Technical Conference “From imagery to map: digital photogrammetric technologies”, Yucatan. 26-29.
27- Manyoky, M & Theiler, Pascal & Steudler, D & Eisenbeiss, H. (2012). “Unmanned aerial vehicle in cadastral applications” The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. 38. 57-62. 5194/10/isprsarchives-XXXVIII-1-C22-57-2011.
28- Mumbone M., (2015). “Innovations in boundary mapping: Namibia, customary land and UAV’s” Bennett R.M., Gerke M., University of Twente, faculty of geoinformation science and earth observation.
29- Nex F, Remondino F. (2014). “UAV for 3D mapping applications: a review” Applied Geomatics. 6 (1), 1–15.
30- Park, J. K., Park, D. W., (2015). “Application of the Ortho Image for the Cadastral Survey” Advanced Science and Technology Letters (Architecture and Civil Engineering), 100, 113-117.
31- Ramadhani Sh.A., (2016). “Using unmanned aircraft system images to support cadastral boundary data acquisition in Indonesia” Bennett R.M., Nex F., University of Twente, faculty of geoinformation science and earth observation.
32- Remondino F, Barazzetti L, Nex F, Scaioni M, Sarazzi D, (2011). “UAV photogrammetry for mapping and 3D modellingcurrent status and future perspectives” ISPRS-International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences. 38 (1/C22), 25–31.
33- Rezaei, M, Shokri, A.H., Miri Jazari, B, (2016). “The effect of GPS antenna’s phase center offset and satellite DOP’s on the exact positioning” International Academic Journal of Science and Engineering. 3 (6), 218-230.
34- Rijsdijk M. and et al, (2013). “Unmanned aerial systems in the process of juridical verification of cadastral border” ISPRS-International Archives of the Photogrammetry, Remote Sensing and Spatial 35- Information Sciences. XL-1/W2. 325-331.
35- Shokri, A., Sadeghian, S. (2020). Investigating the Role and Position of UAVs and Geospatial Information Systems in Command and Control from the perspective of Geomatics. Military Science and Tactics, 16(51), 27-46.
36- Stoter, J. E. (2004). “3D cadaster” Ph.D. thesis, Technische Universiteit Delft the Netherland, 344 pp.