نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری تخصصی مهندسی محیط زیست، دانشکده فنی و مهندسی، واحد همدان، دانشگاه آزاد اسلامی، همدان، ایران

2 استادیار دانشکده مهندسی نقشه برداری و اطلاعات مکانی، دانشکدگان فنی، دانشگاه تهران

3 دانشیار گروه مهندسی عمران، دانشکده فنی و مهندسی، واحد همدان، دانشگاه آزاد اسلامی، همدان، ایران

4 استاد گروه علوم و مهندسی محیط زیست، دانشکده علوم پایه، واحد همدان، دانشگاه آزاد اسلامی، همدان، ایران

چکیده

محصولات عمق نوری ریزگرد اتمسفری (AOD) مبتنی بر ماهواره‌های در حال گردش مانند MODIS، VIIRS و NOAA می­توانند توزیع روزانه AOD جهانی و منطقه ­ای را ارائه دهند. کاربرد آنها برای نظارت بر کیفیت هوا در مقیاس­ های محلی مانند محیط ­های شهری به دلیل قدرت تفکیک مکانی پایین آنها محدود است. اخیراً، علاقه فزاینده­ای به بازیابی محصولات AOD بر اساس تصاویر نوری با قدرت تفکیک بالا شکل گرفته است. هدف اصلی این پژوهش، ارزیابی بازیابی AOD در مناطق شهری با استفاده از تصاویر ماهواره‌ای با قدرت تفکیک مکانی بالا است. با فرض سطح لامبرتی، اصل بازیابی AOD توسعه یافته بر اساس تئوری انتقال تابشی با استفاده از معادله Tanré می­ باشد. برای حل معادله انتقال تابشی، مطالعه حاضر مدل انتقال تابشی شبیه‌سازی دوم سیگنال ماهواره‌ای در طیف خورشیدی (6S) را اتخاذ و یک جدول جستجو را با فرض یک مدل ریزگرد قاره‌ای ساخت. بازتاب سطح زمین در کل دوره مطالعه با استفاده از Landsat 8 OLI برای دوره 2016-2015 تنوع بسیار کمی به صورت ماهانه نشان داد. بازیابی AOD با مقایسه بازتاب TOA اندازه گیری شده و شبیه سازی شده انجام گرفت. اعتبارسنجی با استفاده از یک سایت زمینی مستقر در پشت بام مرکز منطقه ­ای هواشناسی با نام Tamanrasset_INM واقع در منطقه تامنراست، الجزایر انجام شد. اعتبارسنجی نشان می­ دهد که روش بازیابی AOD منجر به خطای استاندارد 0.1068 می­ شود و با  برابر با 70.9% همبستگی خوبی نشان می­ دهد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Aerosol optical depth retrieval using Landsat 8 satellite imagery - Case study: City of Tamanrasset, Algeria

نویسندگان [English]

  • Hosein Nesari 1
  • Reza Shah-Hosseini 2
  • Amirreza Goodarzi 3
  • Soheil Sobhan Ardakani 4
  • Saeed Farzaneh 2

1 PhD Student in Environmental Engineering, College of Engineering, Hamedan Branch, Islamic Azad University, Hamedan, Iran

2 Assistant Professor, School of Surveying & Geospatial Engineering, College of Engineering, University of Tehran, Tehran, Iran

3 Associate Professor, Department of Civil Engineering, College of Engineering, Hamedan Branch, Islamic Azad University, Hamedan, Iran

4 Professor, Department of Environmental Science and Engineering, College of Basic Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran

چکیده [English]

Extended Abstract
Introduction
Atmospheric aerosols are a colloid of solid particles or liquid droplets suspended in the atmosphere. Their diameter is between 10-2 to 10-3 micrometers. They directly and indirectly affect the global climate by absorbing and scattering solar radiation, and they also have a serious impact on human health by emitting harmful substances. In addition, high concentrations of aerosols on a local scale due to natural or human activities have adverse effects on human health, including cancers, pulmonary inflammation, and cardiopulmonary mortality. Monitoring the temporal and spatial variability of high concentrations of aerosols requires regular measurement of their optical properties such as aerosol optical depth (AOD).
Materials & Methods
Algeria is a large country with little knowledge of the spatial and temporal diversity of AOD, and the low spatial resolution of existing products makes it very difficult to predict aerosols (airborne particles) at the local scale, especially in arid southern regions. As a result, AOD recovery with data with higher spatial resolution is crucial for determining air pollution and air quality information. Several AERONET stations have been installed in Algeria. The Tamanrasset_INM station has been selected based on its location and the availability of historical AOD data for the period (2015-2016).
In this study, Landsat-8 / OLI image from tile 192/44 was used for satellite images. To this end, 23 TOA-corrected L1G-level Landsat-8 / OLI cloudless scenes were downloaded from January 2015 to December 2016 in the study area. DN values ​​are converted to TOA reflections using the scaling factor coefficients in the OLI Landsat-8 metadata file. In this study, the minimum monthly reflectance technique was used to recover AOD in this area. As a result, LSR images were used in the recovery process in different months of 2015 and 2016. The process of selecting reference LSRs was initially based on the selection of clear, foggy / cloudless sky images. The selected images were then used to construct artificial images in which each pixel corresponds to the second lowest surface reflection of all selected monthly images to be the LSR pixel for the respective month. The AOD retrieval method developed in this study is based on a LUT, using the 6S radiative transfer model. The advantage of using the 6S model is its ability to estimate direct components and scattering using a limited number of inputs for each spectral band in the entire solar domain. The effect of the viewing angle is limited because Landsat data are usually obtained with a fixed viewing angle. Surface reflectance can be estimated from a pre-calculated LSR database. The accuracy of AOD recovery depends on the use of the appropriate aerosol model. A continental model was selected from the available aerosol models. Other atmospheric parameters such as ozone, carbon dioxide, carbon monoxide and water vapor are considered by default. The AOD values ​​used to make LUT are set as follows: 0.0, 0.05, 0.1, 1.5, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.2 and 1.5. The zenith angles of the sun and the sensor range from 0 to 70 degrees with a step of 5 degrees and the range of azimuth angles from 0 to 180 degrees with a step of 12 degrees. Using these parameters, the radiative transfer equation was run in forward to obtain the TOA reflection. Different combinations of input and TOA output parameters are stored in LUT. AOD retrieval is based on a comparison between the TOAs estimated with the model and the observed items using the best fit approach. Using such an approach, the estimated AODs are simulated in accordance with those used in the production of TOAs, using a competency function that minimizes the distance.
Results & Discussion
In this study, the AODs recovered at 550 nm in a 5-by-5-pixel window around the AERONET site were averaged. The considered AERONET values ​​are the average of all measurements taken within ± 30 minutes of image acquisition time. Observation regression results (AOD from Landsat 8 images and AERONET stations) showed that the correlation coefficient is about 84%. This study shows a good fit of the model on the research data and shows the high capability of the model. This study showed a strong recovery of AOD against AERONET data of more than 70% at . The differences can be attributed to a limited number of points or hypotheses related to the aerosol model used in this study. The assumption of using a pre-calculated LSR does not limit the accuracy of this method because we have shown that in arid regions where the change in land cover in different months of the year is small, a pre-calculated LSR image can be representation used the share of surface reflection in the radiative transfer model throughout the month.
Conclusion
In this study, an AOD derived from a high-resolution satellite at an urban scale was produced in the city of Tamanrasset, Algeria. The developed method assumes that the change in land cover is minimal and the temporal change in LSR is not significant. A pre-calculated LSR image is created to show the surface reflection in the retrieval process. Based on the 6S radiative transfer model, an LUT was constructed to simulate the TOA reflection of the built-in LSRs and a set of geometric and atmospheric parameters. The retrieved AODs were compared with the AERONET ground data. The results show that this approach can achieve reasonable accuracy in AOD recovery, which reaches about 70.9% at . In addition, this approach is suitable for estimating AOD in urban areas compared to existing AOD products with low spatial resolution. The results of this study show a 4% improvement compared to the results of Omari et al. (2019). The results of this study showed that ignoring the monthly changes in LSR values leads to good results in AOD recovery.

کلیدواژه‌ها [English]

  • Aerosol optical depth
  • Urban areas
  • Arid and semi-arid regions
  • Algeria's Tamanrasset city
  • Landsat-8
  1. ارجمند، راشکی، سرگزی؛ مریم، علیرضا، حسین. (1397). پایش زمانی و مکانی پدیده گرد و غبار با استفاده از داده های ماهواره ای در جنوب شرق ایران،با تأکید بر منطقه جازموریان. فصلنامه علمی- پژوهشی اطلاعات جغرافیایی « سپهر», 27(106), 153-168. doi: 10.22131/sepehr.2018.32339
  2. جهانی چهره برق، آخوندزاده هنزائی؛ فاطمه ، مهدی. (1396). تخمین ضخامت نوری هواویزها بر روی منطقه ای از ایران با استفاده از تلفیق تصاویر سنجنده های MODIS سکوهای ماهواره ای TERRA و AQUA. فصلنامه علمی- پژوهشی اطلاعات جغرافیایی « سپهر», 26(103), 71-81. doi: 10.22131/sepehr.2017.28894
  3. Achour, L., Bouharkat, M., Assas, O., & Behar, O. (2017). Hybrid model for estimating monthly global solar radiation for the Southern of Algeria:(Case study: Tamanrasset, Algeria). Energy, 135, 526-539.
  4. Benhadji Serradj, D. E., Sebitosi, A. B., & Fadlallah, S. O. (2022). Design and performance analysis of a parabolic trough power plant under the climatological conditions of Tamanrasset, Algeria. International Journal of Environmental Science and Technology, 19(4), 3359-3376.
  5. Bilal, M., Nichol, J. E., Bleiweiss, M. P., & Dubois, D. (2013). A Simplified high resolution MODIS Aerosol Retrieval Algorithm (SARA) for use over mixed surfaces. Remote sensing of environment, 136, 135-145.
  6. Bouallala, M. H., Neffar, S., & Chenchouni, H. (2020). Vegetation traits are accurate indicators of how do plants beat the heat in drylands: Diversity and functional traits of vegetation associated with water towers in the Sahara Desert. Ecological Indicators, 114, 106364.
  7. Chen, X., Ding, J., Wang, J., Ge, X., Raxidin, M., Liang, J., ... & Ding, Y. (2020). Retrieval of fine-resolution aerosol optical depth (AOD) in semiarid urban areas using Landsat data: A case study in Urumqi, NW China. Remote Sensing, 12(3), 467.
  8. Chudnovsky, A. A. (2021). Monitoring Air Pollution in the Urban Environment by Remote Sensing. Urban Remote Sensing: Monitoring, Synthesis, and Modeling in the Urban Environment, 391-422.
  9. Farahat, A., & Abuelgasim, A. (2022). Effect of cloud seeding on aerosol properties and particulate matter variability in the United Arab Emirates. International Journal of Environmental Science and Technology, 19(2), 951-968.
  10. Fekih, A., Abdelouahab, M., & Marif, Y. (2022). Evaluation of wind resource and mapping during 2009–2018 based on ERA5 reanalysis data: a case study over Algeria. International Journal of Energy and Environmental Engineering, 1-20.
  11. Hagolle, O., Huc, M., Villa Pascual, D., & Dedieu, G. (2015). A multi-temporal and multi-spectral method to estimate aerosol optical thickness over land, for the atmospheric correction of FormoSat-2, LandSat, VENμS and Sentinel-2 images. Remote Sensing, 7(3), 2668-2691.
  12. Irons, J. R., Dwyer, J. L., & Barsi, J. A. (2012). The next Landsat satellite: The Landsat data continuity mission. Remote Sensing of Environment, 122, 11-21.
  13. Jin, Y., Hao, Z., Chen, J., He, D., Tian, Q., Mao, Z., & Pan, D. (2021). Retrieval of Urban Aerosol Optical Depth from Landsat 8 OLI in Nanjing, China. Remote Sensing, 13(3), 415.
  14. Kaufman, Y. J., & Remer, L. A. (1994). Detection of forests using mid-IR reflectance: an application for aerosol studies. IEEE transactions on geoscience and remote sensing, 32(3), 672-683.
  15. Kaufman, Y. J., Tanré, D., Remer, L. A., Vermote, E. F., Chu, A., & Holben, B. N. (1997). Operational remote sensing of tropospheric aerosol over land from EOS moderate resolution imaging spectroradiometer. Journal of Geophysical Research: Atmospheres, 102(D14), 17051-17067.
  16. Levy, R. C., Mattoo, S., Munchak, L. A., Remer, L. A., Sayer, A. M., Patadia, F., & Hsu, N. C. (2013). The Collection 6 MODIS aerosol products over land and ocean. Atmospheric Measurement Techniques, 6(11), 2989-3034.
  17. Levy, R. C., Remer, L. A., & Dubovik, O. (2007). Global aerosol optical properties and application to Moderate Resolution Imaging Spectroradiometer aerosol retrieval over land. Journal of Geophysical Research: Atmospheres, 112(D13).
  18. Lin, H., Li, S., Xing, J., He, T., Yang, J., & Wang, Q. (2021). High resolution aerosol optical depth retrieval over urban areas from Landsat-8 OLI images. Atmospheric Environment, 261, 118591.
  19. Mostefaoui, M., Ziane, A., Bouraiou, A., & Khelifi, S. (2019). Effect of sand dust accumulation on photovoltaic performance in the Saharan environment: southern Algeria (Adrar). Environmental Science and Pollution Research, 26(1), 259-268.
  20. Omari, K., Abuelgasim, A., & Alhebsi, K. (2019). Aerosol optical depth retrieval over the city of Abu Dhabi, United Arab Emirates (UAE) using Landsat-8 OLI images. Atmospheric Pollution Research, 10(4), 1075-1083.
  21. Pahlevan, N., & Schott, J. R. (2013). Leveraging EO-1 to evaluate capability of new generation of Landsat sensors for coastal/inland water studies. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 6(2), 360-374.
  22. Pope Iii, C. A., Burnett, R. T., Thun, M. J., Calle, E. E., Krewski, D., Ito, K., & Thurston, G. D. (2002). Lung cancer, cardiopulmonary mortality, and long-term exposure to fine particulate air pollution. Jama, 287(9), 1132-1141.
  23. Riffler, M., Popp, C., Hauser, A., Fontana, F., & Wunderle, S. (2010). Validation of a modified AVHRR aerosol optical depth retrieval algorithm over Central Europe. Atmospheric Measurement Techniques, 3(5), 1255-1270.
  24. Sayer, A. M., Smirnov, A., Hsu, N. C., Munchak, L. A., & Holben, B. N. (2012). Estimating marine aerosol particle volume and number from Maritime Aerosol Network data. Atmospheric Chemistry and Physics, 12(18), 8889-8909.
  25. She, L., Zhang, H. K., Bu, Z., Shi, Y., Yang, L., & Zhao, J. (2022). A Deep-Neural-Network-Based Aerosol Optical Depth (AOD) Retrieval from Landsat-8 Top of Atmosphere Data. Remote Sensing, 14(6), 1411.
  26. Sun, L., Wei, J., Bilal, M., Tian, X., Jia, C., Guo, Y., & Mi, X. (2016). Aerosol optical depth retrieval over bright areas using Landsat 8 OLI images. Remote Sensing, 8(1), 23.
  27. Takilalte, A., Harrouni, S., & Mora, J. (2022). Forecasting global solar irradiance for various resolutions using time series models-case study: Algeria. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 44(1), 1-20.
  28. Tang, Y., Deng, R., Li, J., Liang, Y., Xiong, L., Liu, Y., ... & Hua, Z. (2021). Estimation of Ultrahigh Resolution PM2. 5 Mass Concentrations Based on Mie Scattering Theory by Using Landsat8 OLI Images over Pearl River Delta. Remote Sensing, 13(13), 2463.
  29. Tian, X., Liu, S., Sun, L., & Liu, Q. (2018). Retrieval of aerosol optical depth in the arid or semiarid region of northern Xinjiang, China. Remote Sensing, 10(2), 197.
  30. Wei, J., & Sun, L. (2016). Comparison and evaluation of different MODIS aerosol optical depth products over the Beijing-Tianjin-Hebei region in China. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 10(3), 835-844.
  31. Wei, J., Huang, B., Sun, L., Zhang, Z., Wang, L., & Bilal, M. (2017). A simple and universal aerosol retrieval algorithm for Landsat series images over complex surfaces. Journal of Geophysical Research: Atmospheres, 122(24), 13-338.
  32. Wei, J., Sun, L., Peng, Y., Wang, L., Zhang, Z., Bilal, M., & Ma, Y. (2018). An improved high‐spatial‐resolution aerosol retrieval algorithm for MODIS images over land. Journal of Geophysical Research: Atmospheres, 123(21), 12-291.
  33. Zhao, J., Kong, X., He, K., Xu, H., & Mu, J. (2020). Assessment of the radiation effect of aerosols on maize production in China. Science of The Total Environment, 720, 137567.