نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد دانشکده مهندسی نقشه برداری، دانشگاه صنعتی خواجه نصیرالدین طوسی، ایران

2 استاد دانشکده مهندسی نقشه برداری، دانشگاه صنعتی خواجه نصیرالدین طوسی، ایران

3 استادیار گروه مهندسی نقشه‌برداری، دانشکده مهندسی علوم زمین، دانشگاه صنعتی اراک

چکیده

پدیده زمینلرزه هرساله در جهان و مخصوصاً کشور لرزهخیزی چون ایران، زیانهای جانی و مالی هنگفتی به بار می‌‌آورد و پیشبینی زمینلرزه به یکی از چالشهای بزرگ دانشمندان در دهههای اخیر تبدیل شده است. از جمله این پیشنشانگرها میتوان به وقوع بیهنجاری در پارامترهای یونسفری قبل از زمینلرزه اشاره نمود. پارامتر مورد بررسی در این تحقیق محتوای الکترون کلی (TEC) است و مناطق مطالعاتی برای بررسی، زمینلرزه دوگانه اهر- ورزقان با بزرگای 6.5 و زمینلرزه سرپل ذهاب با بزرگای 6.3 است. در زمینلرزه اهر- ورزقان از مشاهدات شش ایستگاه GPS و در زمینلرزه سرپل ذهاب از مشاهدات پنج ایستگاه GPS شبکه جهانی IGS، به منظور محاسبه مقدار محتوای الکترون کلی (TEC) یونسفر استفاده شده است. تبدیل فوریه زمان کوتاه (STFT) و پارامترهای آماری میانگین و انحراف معیار برای کشف بیهنجاریهای موجود در سری زمانی یونسفر بهکار گرفته شدهاند. همچنین تغییرات شاخصهای ژئومغناطیسی  و آب و هوایی KP، Dst، F10.7، Vsw (سرعت پلاسما)، Ey (میدان مغناطیسی) و IMFBz (میدان مغناطیسی بین سیاره‌ای) برای اطلاع از شرایط روزهای قبل از وقوع زمینلرزه مورد بررسی و آنالیز قرار گرفتهاند. نتایج نشان میدهد که برای زمینلرزه اهر- ورزقان، بیهنجاریهایی در11، 12، 13 و نیز 5 روز قبل از زمینلرزه وجود دارد. اما برای زمینلرزه سرپل ذهاب، در 6، 7، 13 و 21 روز قبل از زمینلرزه، بیهنجاریهایی قابل مشاهده است. آنالیزهای انجام گرفته در این مقاله نشان میدهد که در صورت بررسی کلیه پارامترهای ژئومغناطیسی و آب و هوائی قبل از وقوع زمینلرزه، میتوان با آنالیز سری زمانی یونسفر با روش STFT، بیهنجاریهای موجود را به صورت مستقیم مشاهده نمود. توجه به این نکته ضروری است که در روزهایی که شرایط ژئومغاطیسی و آب و هوایی آرامی حاکم نیست، نمیتوان تنها وقوع زمینلرزه را علت بیهنجاریهای کشف شده در سری زمانی یونسفر، دانست.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Analysis of ionospheric anomalies in earthquakes using mean index and short time Fourier transform

نویسندگان [English]

  • Lida Koshki 1
  • Behzad Voosoghi 2
  • Seyyed Reza Ghaffari-Razin 3

1 Faculty of Geodesy and Geomatics Engineering, K. N.Toosi University of Technology, Tehran, Iran

2 Faculty of Geodesy and Geomatics Engineering, K. N.Toosi University of Technology, Tehran, Iran

3 Department of Geo-science Engineering, Arak University of Technology, Arak, Iran

چکیده [English]

Extended Abstract
 Introduction
Earthquake every year in the world, especially in a seismic country like Iran, causes huge human and financial losses. Earthquake prediction has become one of the great challenges of scientists in recent decades. One of the new methods is the evaluation of anomalies in the ionospheric parameters before the earthquake. The parameter investigated in this method is the total electron content (TEC). The study areas in this paper are the Ahar-Varzaghan earthquake with a magnitude of 6.5 and 6.3, the Sarpol Zahab earthquake with a magnitude of 6.3. In the Ahar-Varzaghan earthquake, the observations of 6 GPS stations and in the Sarpol Zahab earthquake, the observations of 5 GPS stations of the IGS network were used to calculate the ionosphere TEC. Short time Fourier transform (STFT) along with statistical parameters of mean and standard deviation have been used to detect of ionosphere time series anomalies. Also, geomagnetic and weather indicators KP, Dst, F10.7, Vsw (plasma velocity), Ey (magnetic field) and IMFBz (interplanetary magnetic field) have been investigated and analyzed to know the conditions of the days before the earthquake.
Materials & Methods
In recent years, the spectral analysis of ionospheric anomalies using the STFT method and its application in earthquake forecasting has become popular. The research results show that spectral methods can be a useful and reliable tool in further analysis, and the STFT method can be evaluated as a successful method for detecting ionosphere anomalies, which is also compatible with classical methods. Also, STFT is a powerful tool for processing a time series without the need for average and median values, so it can be used for other studies such as navigation, geophysics, geology and climatology. STFT is used as a modified version of the classical Fourier transform to obtain the frequency information of a signal in the time domain. This method provides the analysis of a small part of the signal at a certain time through windowing the signal. In STFT, the signal with a constant time-frequency resolution and with the same window length in all frequencies is divided into smaller parts, Fourier transform is applied on it and finally the output will be presented in two time-frequency dimensions. As a result, it is possible to obtain information about when and with what frequency each signal occurred.
Results & Discussion
In the Sarpol Zahab earthquake and in both classic and STFT methods, anomalies were observed on 309, 314 and 323 DOY, before the earthquake. The amount of these anomalies in the ionosphere time series was in the 0.058 to 5.44 TECU. The parameters related to solar and geomagnetic activities were also investigated in the days before and after the earthquake. Considering that the solar and geomagnetic activities (as an important factor in creating anomalies in the ionosphere time series) were calm in the days before the earthquake, these detected anomalies can be attributed to the earthquake. However, in the Ahar-Varzaghan earthquake and using both methods, in 5 to 15 days before the earthquake, anomalies of about 0.13 to 1.4 TECU were observed. In the days before the Ahar-Varzaghan earthquake, there were almost undisturbed conditions on most days, and therefore it cannot be said with certainty that the observed anomalies are completely related to the earthquake. The results of this paper showed that the STFT method is a powerful tool for spectral analysis without the need for values such as average or median. This feature of STFT is its strength compared to classical methods; because independence from these values minimizes the sources of error related to them (abnormalities, sudden variations in the ionosphere such as annual, semi-annual and seasonal variations). It is important to mention that the STFT method is more accurate in calm solar and geomagnetic conditions and provides high accuracy results.
Conclusion
The results show that for the Ahar-Varzaghan earthquake, there are anomalies on the 11, 12, 13 and 5 days before the earthquake. But for the Sarpol Zahab earthquake, anomalies can be seen 6, 7, 13 and 21 days before the earthquake. The analyzes of this paper show that if all the geomagnetic and weather parameters before the earthquake are investigated, the existing anomalies can be directly observed by analyzing the time series of the ionosphere with the STFT method. It is important that on days when geomagnetic conditions and calm weather are not prevailing, the occurrence of earthquake cannot be considered as the cause of anomalies detected in the ionosphere time series.

کلیدواژه‌ها [English]

  • Ionosphere
  • TEC
  • STFT
  • Earthquake precursor
  • GPS
1- قدسی، مشهدی حسینعلی؛ منا، مسعود (1393). بررسی پیش‌نشانگرهای زمین‌لرزه و سونامی  2010 ژاپن در یونسفر. اولین کنفرانس ملی مدیریت بحران: زلزله و آسیب‌پذیری اماکن و شریان‌های حیاتی.
2- معماریان، جمور؛ امید، یحیی (1394). آنالیز تبدیل موجک تغییرات محتوی الکترونی یونسفر قبل از زمین‌لرزه‌های بزرگ. نشریه علمی علوم و فنون نقشه‌برداری, 4(4), 223-232. ‎
3- Akhoondzadeh, M., Saradjian, M., 2011. TEC variations analysis concerning Haiti (January 12, 2010) and Samoa (September 29, 2009) earthquakes. Advances in Space Research 47(1): 94-104.
4- Amerian, Y., Hossainali, M.M. and Voosoghi, B., 2013. Regional improvement of IRI extracted ionospheric electron density by compactly supported base functions using GPS observations. Journal of atmospheric and solar-terrestrial physics, 92, pp.23-30.
5- Arikan, F., et al., 2008. Estimation of single station interfrequency receiver bias using GPS‐TEC. Radio Science 43(4).
6- Burrus, C.S., 1995. Multiband least squares FIR filter design. IEEE transactions on signal processing, 43(2), pp.412-421.
7- Calais, E. and Minster, J.B., 1995. GPS detection of ionospheric perturbations following the January 17, 1994, Northridge earthquake. Geophysical Research Letters, 22(9), pp.1045-1048.
8- Ciraolo, L., Azpilicueta, F., Brunini, C., Meza, A. and Radicella, S.M., 2007. Calibration errors on experimental slant total electron content (TEC) determined with GPS. Journal of Geodesy, 81(2), pp.111-120.
9- Dobrovolsky, I. P., Zubkov, S. I., and Miachkin, V. I., 1979, Estimation of the size of earthquake preparation zones, Pure Appl. Geophys., 117, 1025–1044.
10- Freund, F., 2002. Charge generation and propagation in igneous rocks. Journal of Geodynamics, vol. 33, pp. 543-570, 2002.
11- Gabor, D., 1946. Theory of communication. Part 1: The analysis of information. Journal of the Institution of Electrical Engineers-Part III: Radio and Communication Engineering, 93(26), pp.429-441.
12- Ghaffari Razinm M.R., 2015. Development and analysis of 3D ionosphere modeling using base functions and GPS data over Iran. Acta Geod Geophys, 51(1):95-111.
13- Hanzaei .M.A, 2011. Comparative Study of Earthquake Preliminary Indicators from Satellite Data. Ph.D thesis, Tehran University,2011.
14- Harris, F.J., 1978. On the use of windows for harmonic analysis with the discrete Fourier transform. Proceedings of the IEEE, 66(1), pp.51-83.
15- Klobuchar, J.A., 1996. Ionospheric effects on GPS. Global positioning system: theory and application.
16- Komjathy, A. (1997). “Global ionospheric total electron content mapping using the Global Positioning System.” University of New Brunswick Fredericton, New Brunswick, Canada.
17- Le, H., et al., 2015. Recent progress in ionospheric earthquake precursor study in China: A brief review. Journal of Asian Earth Sciences 114: 420-430.
18- Liao, X., 2001. Carrier phase based ionosphere recovery over a regional area GPS network. University of Calgary.
19- Liu, J., et al., 2010. Temporal and spatial precursors in the ionospheric global positioning system (GPS) total electron content observed before the 26 December 2004 M9. 3 Sumatra–Andaman Earthquake. Journal of Geophysical Research: Space Physics 115(A9).
20- Liu, J.Y., Chen, Y.I., Chuo, Y.J. and Tsai, H.F., 2001. Variations of ionospheric total electron content during the Chi‐Chi earthquake. Geophysical Research Letters, 28(7), pp.1383-1386.
21- Moore, G.W., 1964. Magnetic disturbances preceding the 1964 Alaska earthquake. Nature, 203(4944), pp.508-509.
22- Parrot, M., 1995. Electromagnetic noise due to earthquakes,” Handbook of Atmospheric Electrodynamics, vol. 2, pp. 95-116, 1995.
23- Pulinets, S.A., Legen’Ka, A.D., Gaivoronskaya, T.V. and Depuev, V.K., 2003. Main phenomenological features of ionospheric precursors of strong earthquakes. journal of atmospheric and solar-terrestrial physics, 65(16-18), pp.1337-1347.
24- Pulinets, S. and Boyarchuk, K., 2004. Ionospheric precursors of earthquakes. Springer Science & Business Media.
25- Schunk, R.W., Nagy, A.F., 2000, Ionospheres: Physics, Plasma Physics, and Chemistry, Cambridge University Press, 554.
26- Seeber, G., 2003. Satellite Geodesy, 2nd completely revised and extended edition. Walter de Gruyter GmbH & Co. KG, 10785, pp.303-304.
27- Şentürk, E., Inyurt, S. and Sertçelik, İ., 2020. October. Ionospheric anomalies associated with the M w 7.3 Iran–Iraq border earthquake and a moderate magnetic storm. In Annales Geophysicae (Vol. 38, No. 5, pp. 1031-1043). Copernicus GmbH.
28- Tariq, M.A., Shah, M., Hernández-Pajares, M. and Iqbal, T., 2019. Pre-earthquake ionospheric anomalies before three major earthquakes by GPS-TEC and GIM-TEC data during 2015–2017. Advances in Space Research, 63(7), pp.2088-2099.