نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری، گروه زمین‌شناسی، واحد محلات، دانشگاه آزاد اسلامی، محلات، ایران

2 استایار، دانشکده مهندسی معدن، دانشگاه صنعتی اصفهان، اصفهان، ایران و مدرس مدعو، واحد محلات، دانشگاه آزاد اسلامی، محلات، ایران

3 عضو هیئت علمی گروه زمین‌شناسی، واحد محلات، دانشگاه آزاد اسلامی، محلات، ایران

4 مدرس مدعو، گروه زمین‌شناسی، واحد محلات، دانشگاه آزاد اسلامی، محلات، ایران

چکیده

کانسار طلای موته و نواحی مجاور آن از تیپ طلای کوهزایی است، در این ناحیه در مجموعه متاولکانیک‌ها و در رابطه با گنایس و میکاشیست‌هاى متعلق به پرکامبرین، کانی‌زایی عمدتاً در زون‌های دگرسانی سیلیسى و سریسیتى و کربناتیزاسیون، در شکستگی‌ها به‌صورت رگه و رگچه‌اى به همراه اکسیدهای آهن متمرکز شده است. طبق بررسـی‌های انجـام شـده در ایـن منطقـه، دگرسـانی‌های تـوأم رسـی، اکسـیدهای آهـن و سیلیسی شدن سنگ دیواره برای پی‌جویی ذخایر طلا حایز اهمیت است. در این تحقیق تصاویر ماهواره‌ای ASTER و لندست 8  به منظور بارزسازی کانی‌های رسی در رابطه با دگرسانی‌ها، اکسیدهای آهن و واحدهای سنگی منطقه مطالعاتی و از داده ماهواره‌ای سنتینل-2 برای افزایش قدرت تفکیک مکانی این داده‌ها و افزایش دقت مکانی نقشه‌های دگرسانی استخراج شده مورد استفاده قرار گرفته اند. پس از انجام پیش‌پردازش‌های لازم، برای پردازش تصاویر فوق‌الذکر روش‌های مختلف پردازش داده‌هاى ماهواره‌اى چند طیفى ASTER مانند ترکیب رنگی کاذب، نسبت باندی، روش کمترین مربعات رگرسیون [1](Ls-Fit)، آنالیز مولفه های اصلی [2](PCA)، نقشه بردار زاویه طیفی[3](SAM)، فیلتر گذاری تطبیقی [4](MF)، برای شناسایی و تفکیک کانی‌های دگرسانی مرتبط با کانی‌زایی طلا به کار گرفته شدند. در نهایت نقشه پراکندگی زون‌های دگرسانی شناسایی شده، با نقشه زمین شناسی، مشاهدات میدانی و نتایج آنالیز XRD نمونه‌های میدانی مقایسه شد. برای مقایسه نتایج و ارزیابی صحت روش‌های یاد شده از ماتریس خطا و ضریب کاپا استفاده شد. پس از نمونه‌برداری‌ها و تجزیه‌های آماری، مشخص شد که روش نقشه‌بردار زاویه طیفی، بهترین تطابق را با واحدهای زمین‌شناسی منطقه نشان می‌دهد، و با این روش علاوه‌بر زون‌های از پیش شناخته شده، محدوده‌های جدید دگرسان شده قابل شناسایی است. 
 
[1] - least square Fit
[2]-  Principal Component Analysis
[3] - Spectral Angle Mapper
[4] - Matched Filtering

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Identification of hydrothermal alterations in Muteh area, northwest of Isfahan, using satellite images

نویسندگان [English]

  • Keyvan Mokhtari 1
  • Hooshang Asadi Harouni 2
  • Mohammad Ali Aliabadi 3
  • Somayeh Beiranvand 4

1 Ph.D. Student, Department of Geology, Mahallat Branch, Islamic Azad University, Mahallat, Iran

2 Assistant Professor, Faculty of Mining Engineering, Isfahan University of Technology, Isfahan, Iran and Invited Lecturer, Mahallat Branch, Islamic Azad University, Mahallat, Iran

3 Facualty Member, Department of Geology, Mahallat Branch, Islamic Azad University, Mahallat, Iran

4 Invited teacher, Department of Geology, Mahallat Branch, Islamic Azad University, Mahallat, Iran

چکیده [English]

Extended Abstract
 1- Introduction
Alteration is the simplest, cheapest and most suitable means of mineral exploration. The best way to find changes is to use satellite data processing.
Asadi and Tabatabaei (2007) have used band ratio processing methods and false color images by using selected principal component processing (PCA) to identify the range of variations in different regions on Aster images. Gomez et al. (2005) visualized the lithological units of Namibian using the PCA algorithm on Aster data.
The exposed rock units in Muteh mining area include a series of sedimentary, volcanic, and volcanic-clastic metamorphic rocks that extends from the green schist facies to the border of green schist and amphibolites along the northeast-southwest direction. These units have been repeatedly penetrated by alkaline intrusions, especially acid and granite (Rashidenjad, Omran et al., 2002).
In general, the controlling elements of mineralization in Muteh area include structural factors (faults and fractures), alteration, and deformation. Field observations indicate the occurrence of vein mineralization and gold sulfide deposits in mylonite shear zones and fault zones in felsic to mafic metavolcanic host rocks.
Gold mineralization is mainly concentrated in highly altered metariolites containing iron and copper sulfides and within fractures as veins and deposits. Alterations in silica, sericite, and carbonation are also observed along with these sediments, which are studied as exploration keys (Moritz et al., 2006).
In this area, according to the lithology and distribution of alteration zones and the type of mineralization in Muteh gold mine, gold orogeny-type mineralizations are expected, which can be indirectly identified by recognizing the above alteration.
2- Materials and methods
In this study, Aster satellite images have been used to identify, discover and separate alteration zones in ENVI 5.3 software. Also, Landsat 8 satellite images have been utilized for general investigation and identification of hydrothermal alteration zones and expansion of iron oxide minerals, and Sentinel 2 satellite data due to better spatial and radiometric resolution than the above data has been applied to increase the spatial resolution of these data and the spatial accuracy of the map from the extracted changes.
In order to validate between the field observations and spectral analysis, 24 rock samples were taken from the place of alteration, especially siliceous, argillic, and sercitic alteration around Senjedeh and Chah Khatoon deposits. 11 samples were sent to Zarazma laboratory for XRD analysis, and five samples were sent to Zarkavan Alborz Company’s laboratory for chemical analysis of 41 elements by ICP-MS method and gold element by Fire Assay method.
3- Results
Considering the relationship between alteration zones and metal mineralization, it is very important to know and map these areas in the exploration of these deposits.
The results and images show that the methods used in determining and separating the altered areas in Muteh exploratory area are acceptable and the optimal and effective methods in this research, SAM and MF, have been introduced.
According to the field observations and surface sampling around Chah Khatoon and Senjedeh mineral deposits, as well as the investigation of changes, it was found that the most important changes in the region are: silicification, kaolinization, sericization, chlorination, alonation, pyrite, carbonation and so forth. This wide range shows the difference in intensity of alteration in different parts of the mineral reserve, which can be attributed to the system of joints, fractures and faults in the region.
According to the available evidence, the metariolite rock is highly silicified in the tensile zones or in places with dense seams, and the pyrite particles in the context of these rocks have turned into iron hydroxide.
4- Discussion
By using satellite data processing, various data and information can be identified and extracted. Satellite data processing is done in two ways: visual and digital processing. By combining these two methods, the desired effects can be detected more accurately than the accuracy of satellite images. The visual method consists of preparing images of different color combinations by placing spectral bands in the red, green, and blue channels. Digital satellite image processing methods include band ratio, principal component analysis, least square regression method (Ls-Fit), spectral analysis, spectral angle mapping (SAM), and adaptive MF filter. The selection of the above methods was based on the type of information requested to extract data from images.
Aster sensor images have no blue band (spectral range 0.4-0.5 µm) and the color composition of its VNIR bands is a standard RGB (1,2,3) false color composition. In this color combination, vegetation is seen in red. Since the study area is located in a relatively arid environment without vegetation, vegetation cover was avoided in the spectral analysis.
The use and processing of Aster satellite data is one of the main features of this sensor; the use of unique spectral reflectance curves of alteration indicator minerals helped to identify and highlight these altered areas as well as finding the potential of areas prone to metal mineralization. Due to the high ability of Sentinel-2A images in identifying gossan and iron oxide ranges, the processing of these data was used to highlight these areas better.
5- Conclusion
According to the agreement of the results of geochemical and XRD studies with the distribution map of the alteration zones identified from the reference spectrum (USGS) and the spectral library (JPL), with the distribution map of lines and structural fractures of Muteh exploratory zone outside the pre-identified areas, new alteration zones were also introduced that require field research to confirm the results of stereo data processing.

کلیدواژه‌ها [English]

  • Gold Mineralization
  • Alteration
  • Muteh
  • Spectroscopy
  • Aster
  • Sentinel-2
  • Landsat 8
1- اسدی هارونی، طباطبایی؛ هوشنگ، حسن (1386). شناسایی و تفکیک دگرسانی‌های در ارتباط با کانی‌زایی طلا به کمک پردازش داده‌های ماهوارهای استر در منطقه موته. بیست و ششمین گردهمایی علوم زمین، ص39-32.
2- جوادنژاد، علی‌نیا، بهنیا؛ فرید، فیروز، پوران (1389). شناسایی دگرسانی‌ها و عوارض ساختمانی به وسیله تصاویر  + ETM  و اطلاعات توپوگرافی برای پی جویی کانسارهای طلای هیدروترمال در منطقه دلیجان. مجله علمی و پژوهشی امیرکبیر، شماره ج-72، ص16-9.
3- عباس‌زاده، هزارخانی؛ ملیحه، اردشیر (1388). شناسایی و تفکیک زون‌های دگرسانی هیدروترمال در منطقه رابر کرمان با استفاده از داده‌های ماهواره‌ای استر. مجموعه مقالات سومین کنفرانس مهندسی معدن ایران، ص285-277.
4- عبدالهی، محمد جواد (1388)؛ زمین‌شناسی و زایش کانسار طلای موته (گلپایگان - اصفهان)؛ رساله دکتری زمین‌شناسی اقتصادی، دانشگاه شهید باهنر کرمان.
5- غضنفری نجف‌آبادی، محمدجواد (1393)؛ پتانسیل‌یابی کانی‌سازی مشابه تیپ طلای موته در محدوده دلیجان؛ پایان‌نامه کارشناسی ارشد مهندسی اکتشاف، دانشگاه صنعتی اصفهان.
6- میخک، طباطبایی؛ احسان، حسن (1393). آنالیز طیفی داده‌های استر محدوده اکتشافی معدن طلای موته و نواحی مجاور. همایش ملی علوم زمین و توسعه پایدار، ص 177-168. 
7- Alavipanah, S.K., Komaki, C.B. and Alikhah Asl, M., 2005. Application of Thermal Remote Sensing in the Enviromantal Studies, The 9th world multiconfrence on systemics, cybernetics and informatics, p. 1-31. Vol.9 No.10.
8- Asran, A.M.H., Hassan, S.M., 2019. Remote sensing-based geological mapping and petrogenesis of Wadi Khuda Precambrian rocks South Eastern Desert of Egypt with emphasis on leucogranite. Egypt. J. Rem. Sens. & Space Sci. (in press). https://doi.org/10.1016/j.ejrs.2019.07.004.
9- ASTER user’s guide (2005), part 1, ver 4.0
10- Brockman, C.E., Fernandez, A., Ballon, R. and Claure, H., 1978. Analysis of geological structures based on Landsat-1images. Remote-sensing applications for mineral exploration.(A 78-53376 24-43) Stroudsburg, Pa., Dowden, Hutchinson and Ross, Inc., 292-317.
11- Crosta, A.P. and Moore, J.M., 1989. Enhancement of landsat thematic mapper imagery for residual soil mapping in SW Minas Gerais State Brazil: a prospecting case history in greenstone belt terrain, proceedings of the 9th thematic conference on remote sensing for exploration geology, Calgary, 11(11): 1173-1187. DOI: 10.4236/abb.2020.1111032.
12- Di Tommaso, I., Rubinstein, N., 2007, Hydrothermal alteration Mapping using ASTER data in the Infiernillo Porphyry deposit, Argentina. Ore Geology Review, 32(1-2): 275–290. https://doi.org/10.1016/j.oregeorev.2006.05.004.
13- Drusch, M., Del Bello, U., Carlier, S., Colin, O., Fernandez, V., Gascon, F., Hoersch, B., Isola, C., Laberinti, P., Martimort, P., Meygret, A., Spoto, F., Sya, 0., Marchese, F., Bargellini, P., 2012. Sentinel-2: ESA’s optical high-resolution mission for GMES operational services, Remote Sens. Environ, 120: 25-36. https://doi.org/10.1016/j.rse.2011.11.026.
14- Ferreir, G., White, K., Griffiths, G., Bryant, r., Stefofuli, M., 2002. the mapping of hydrothermal alteration zones on the island of Levos, Greece using an integrated remote sensing dataset. International of journal of Remote sensing, 23(2): 341-356. https://doi.org/10.1080/01431160010003857.
15- Gomez, C., Delacourt, C., Allemand, P., Ledru, P. and Wackerle, R., 2005. Using ASTER remote sensing data set for geological mapping, in Namibia, Remote Sensing, 30 (1-3): 97-108. https://doi.org/10.1016/j.pce.2004.08.042.
16- Harsanyi, J. C. and Chang, C., 1994. Hyperspectral image classification and dimensionality reduction: An orthogonal subspace projection approach. IEEE transactions on Geosciences and Remote Sensing, 32(4): 770-785. DOI: 10.1109/36.298007.
17- Immitzer, M., Vuolo, F., Atzberger, C., 2016. First Experience with Sentinel-2 Data for Crop and Tree Species Classifications in Central Europe. Remote Sensing, 8(3): 166. https://doi.org/10.3390/rs8030166.
18-Irons, J.R., Dwyer, J.L., Barsi, J.A., 2012. The next Landsat satellite: the Landsat data continuity mission. Remote Sens. Environ. 122: 11-21. https://doi.org/10.1016/j.rse.2011.08.026.
19-Lefebvre, A., Sannier, C., and Corpetti, T., 2016. Monitoring urban areas with Sentinel-2A data: Application to the update of the Copernicus high resolution layer imperviousness degree. Remote Sensing, 8(7): 606. https://doi.org/10.3390/rs8070606.
20- Mehrabi, B., Tale Fazel, E. and Shahabifar, M., 2012. Ore mineralogy and fluid inclusions constraints on genesis of the Muteh gold deposit (western Iran). Geopersia, 2(1-Serial): 67-90      10.22059/JGEOPE.2012.24802.
21- Mirzababaei, G., Shahabpour, J., Zarasvandi, A. and Hayatolgheyb, S.M., 2016. Structural Controls on Cu Metallogenesis in the Dehaj Area, Kerman Porphyry Copper Belt, Iran: A Remote Sensing Perspective, journal of sciences islamic republic of iran, 27(3): 253-267.
22- Module, F. L. A. A. S. H. (2009). Atmospheric correction module: Quac and flaash user’s guide. Version, 4, 44.‏
23- Mohajjel, M., Fergusson, C.L. and Sahandi, M. R., 2003. Cretaceous-Tertiary convergence and continental collision Sanandaj-Sirjan Zone, western Iran. Journal of Asian Earth Sciences, 21(4): 397-412. https://doi.org/10.1016/S1367-9120(02)00035-4.
24- Moritz R., Ghazban F., Singer B. S., 2006. Eocene gold ore formation at Muteh, Sanandaj-Sirjan Tectonic Zone, Western Iran: a result of late-stage extension and exhumation of metamorphic basement rocks within the Zagros Orogen. Economic Geology, 101(8) 1497–1524. https://doi.org/10.2113/gsecongeo.101.8.1497.
25- Nagedra. H. and Rocchini, D. (2008). “High resolution satellite imagery for tropical bio diversity Studies: the devil is in the detail”. Biodiver Conserv. No. 1. pp. 3431–3442.
26- Omrani, J., Agard, P., Whitechurch, H., Benoit, M., Prouteau, G. and Jolivet, L., 2008. Are magmatism and subduction history beneath the Zagros Mountains, Iran, A new report of adakites and geodynamic consequences. Lithos, 106(3-4): 380-398. https://doi.org/10.1016/j.lithos.2008.09.008.
27- Paul, F., Winsvold, S., Kääb, A., Nagler, T., Schwaizer, G., 2016. Glacier Remote Sensing Using Sentinel-2. Part II: Mapping Glacier Extents and Surface Facies, and Comparison to Landsat 8. Remote Sensing, 8(7): 575. https://doi.org/10.3390/rs8070575.
28- Rachidnejad-Omran, N., Emami, M. H., Sabzehei, M., Rastad, E., Bellon, H. and Piqué, A. 2002. Lithostratigraphie et histoire paléozoı̈que à paléocène des complexes métamorphiques de la région de Muteh, zone de Sanandaj–Sirjan (Iran méridional). Comptes Rendus Geoscience, 334 (16): 1185-1191. https://doi.org/10.1016/S1631-0713(02)01861-8.
29- Shokry, M. M., Sadek, M. F., Osman, A. F., & El Kalioubi, B. A. (2019). Precambrian basement rocks of Wadi-Khuda-Shut area, South Eastern Desert of Egypt: Geology and remote sensing analysis. The Egyptian Journal of Remote Sensing and Space Science, 24(1), 59-75.‏ https://doi.org/10.1016/j.ejrs.2019.12.005.
30- Tangestani, M.H. and Moore, F., 2001. Comparison of three principal component analysis techniques to porphyry copper alteration mapping. A case study, Meiduk area, Kerman, Iran. Canadian Journal of Remote Sensing, 27(2): 176-182. https://doi.org/10.1080/07038992.2001.10854931
31- Walfir, P.M., Filho, S. and Paradella, W.R., 2005. Use of RADARSAT-1 fine mode and Landsat-5 TM selective principal component analysis for geomorphological mapping in a macrotidal mangrove coast in the Amazon Region. Can. J, Remote Sensing, 31(3): 214-224. https://doi.org/10.5589/m05-009
32- Yuhas, R. H., Goetz, A. F. H. and Boardman, J. W., 1992. Discrimination Among Semi-Arid Landscape Endmembers Using the Spectral Angle Mapper (SAM) Algorithm. Summaries of the 4th JPL Airborne Earth Science Workshop, JPL publication, 1: 147-149.