نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار، گروه سنجش از دور و سیستم اطلاعات جغرافیایی (GIS)، دانشکده علوم زمین، دانشگاه شهید چمران اهواز

2 کارشناس ارشد سنجش از دور و سیستم اطلاعات جغرافیایی (GIS)، دانشکده علوم زمین، دانشگاه شهید چمران اهواز

3 استادیار، گروه سنجش از دور و سیستم اطلاعات جغرافیایی (GIS)، دانشکده علوم زمین، دانشگاه شهید چمران اهواز

چکیده

امروزهانرژی­هاینوبهرغمناشناختهماندن،بهسرعتدرحالگسترشونفوذهستندوغفلتازآنها،غیرقابلجبرانخواهدبود. خورشیدبه عنوانبزرگ­ترینمنبعانرژیجهانبهشمارمی­رودکهبه گونه­هایمختلفامکانبهرهگیریازآنوجوددارد. در این مطالعه مدلسازی میزان دریافت تابش خورشید بر اساس موقعیت جغرافیایی و با بهرهگیری از رویکردهای نوین مطالعاتی انجام شد. به منظور اولویتبندی منطقه مورد مطالعه، به لحاظ پتانسیل توسعه سیستمهای فتوولتاییک، سه دسته معیار براساس نظرات کارشناسی تعیین گردید. این معیارها شامل معیارهای ساختمانی تراکم، معیارهای فنی و معیارهای محیطی میباشند. مدلسازی سیستم استنتاج فازی برای اولویت­بندی منطقه انجام شد.نتایج حاصل از سیستم استنتاج فازی نشان میدهد که 10 کیلومتر مربع از مساحت کل منطقه دارای اولویت توسعه متوسط و 7/0 کیلومتر مربع به اولویت توسعه خیلی زیاد اختصاص دارد که به ترتیب بیشترین و کمترین میزان را تشکیل می­دهند. با توجه به عدم وجود آگاهی عمومی از ارزش انرژی تجدیدپذیر خورشید در مناطق شهری، طراحی و تهیه یک سامانه مکانی تحت وب ضمن ایفای نقش در افزایش سطح آگاهیهای عمومی، قابلیت استفاده به عنوان یک سیستم پشتیبان تصمیمگیری به منظور ارزیابی امکان سنجی توسعه سیستمهای تبدیل انرژی خورشیدی را فراهم میآورد. برای این منظور سامانه Web GIS انرژی خورشیدی منطقه با استفاده از نرم­افزارهای متن باز طراحی و انجام شد. پژوهش حاضر ضمن تأکید بر موفقیتآمیز بودن بهره­گیری از فناوری Web GIS در حوزه انرژی تجدیدپذیر خورشید، استفاده از این فناوری را به عنوان راهکاری نوین و کارآمد جهت مدیریت مؤثر و برنامهریزی در این زمینه مورد تأکید قرار میدهد.

کلیدواژه‌ها

عنوان مقاله [English]

Estimation of the potential of building rooftops for the use of Photovoltaic (PV) systems in urban areas and its development in Web-based Geographic Information System- Case Study: Region 4 of Ahwaz

نویسندگان [English]

  • Kazem Rangzan 1
  • Nazanin Ghanbari 2
  • Mostafa Kabolizade 3
  • Poria Moradi 2

1 Associate Professor, Department of Remote sensing and Geographic Information System, Faculty of Earth Science, University of Shahid Chamran, Ahvaz, Iran

2 Master degree of Remote sensing and Geographic Information System, Faculty of Earth Science, University of Shahid Chamran, Ahvaz, Iran

3 Assistant Professor, Department of Remote sensing and Geographic Information System, Faculty of Earth Science, University of Shahid Chamran, Ahvaz, Iran

چکیده [English]

Extended Abstract
Introduction
Energy is one of the essential components for industrial activities and the need of all people, therefore, its supply and demand is continually increasing in human societies. Population growth, its expansion and distribution, along with the ever-increasing human need for new and more efficient energy, have forced man to turn to natural renewable energies. The sun is considered to be the largest energy source in the world, which can be used in many ways. Being non-polluting, clean, free and accessible, are the important features for using renewable solar energy. Solar energy is one of the best and most economical renewable energy in Iran, which not only reduces many human concerns, such as environmental pollution, energy exhaustibility, energy conversion, etc., but also considering the climate of Iran, it can well develop in Iran. Despite the great potential of using solar energy in the country due to the intensity of radiation as well as a very good area for installation and use of solar energy, it is possible to install photovoltaic panels. Regarding the climate of Ahwaze city in terms of radiation intensity (According to the statistics of the New Energy Organization, about 4.5-5 kWh / m 2 / day) and sunny days and on the other hand, due to the establishment of important factories and large industries in the city, it faces the problem of energy and pollution caused by fossil fuels. Therefore, the study of solar energy and its potential for using solar energy to plan for the use of this energy seems necessary. Since no significant steps have been taken in this regard, this study focuses on this important issue, so that by designing a Web GIS system, one can take a step in the direction of data management and decision-making to improve the status quo.
 
Materials and methods
The present research seeks to exploit renewable solar energy using solar technologies. The spatial distribution modeling of this renewable resource was performed using GIS analyses and computational intelligence. For this purpose, during the implementation of the survey, Solar Analyst Model available in ArcGIS software was used to estimate the solar radiation in the region. Also, in order to prioritize the region based on having the required potential to exploit solar photovoltaic systems, three categories of effective criteria including environmental criteria, building-density criteria and technical criteria were identified. Then, modeling was done using Fuzzy Inference System. The knowledge of available solar energy and the area of building rooftops are essential components for calculating the potential of electricity generation of photovoltaic systems, but there are technical considerations that must be taken into account in these calculations. In most cases, the calculation of photovoltaic potential requires the consideration of the output capacities of the panels. For this purpose, the technical potential of photovoltaic systems was calculated based on the formulas, the requirement of which is to estimate the geographic potential of the study area. The final stage is the design and implementation of the solar energy Web GIS system.
 
Discussion and Results
Estimation of the total radiation received by the earth in the study area using Solar Analyst model, showed the total solar radiation from 0.4 to 1461 kWh per square meter per year. Also, the calculation of the geographic potential of the region and in particular the geographic potential of the rooftops, was performed using Digital Surface Model (DSM) and the results showed that major parts of the region had the potential from 1 to 49 kW per day. Technical potential of photovoltaic systems (Ei) for the roofs, was calculated using the geographical potential and its value varies from 0.1 to 138 kW per day. The results of fuzzy inference system shows that 10 square kilometers of the total area has a medium development priority and 0.7 square kilometers of the total area has a high development priority that form the highest and the lowest respectively.
 
Conclusion
Based on what has been stated so far, it can be said that the findings of the present study indicate the success of the integration of two Web GIS and solar energy knowledge in meeting predetermined objectives of the research. Utilizing this process, while providing the opportunity to assist in the decision-making process, provides web-based solar maps using spatial data. In fact, the designed system can be considered as a decision-making tool, if it allows users to view spatial information in the form of a map in addition to providing descriptive information about the region’s potential of energy generation. Users can use this system to identify appropriate locations for installing solar equipment and maximize their benefits.

کلیدواژه‌ها [English]

  • Renewable Energy
  • Solar Analyst Model
  • Geographic Information System
  • Web GIS
  • Fuzzy Inference System
1- احمدی‌زاده، س. (1382). تعیین و به کارگیری مدل‌های کمی اکولوژیک در محیط GIS، (رساله دکترا)، دانشگاه تربیت مدرس.
2-  سازمان مدیریت و برنامه‌ریزی خوزستان، 1390
3- سبزی‌­پرور، ع. ختار، ب. و محب‌زاده، ح. (1394). بررسی و مقایسه توانایی GIS در پهنه‌بندی توزیع فصلی و سالانه تابش خورشیدی کل (بررسی موردی: استان‌های مرکزی ایران). مجله ژئوفیزیک ایران، 9(2)، 29-14.
4- عصاره‌زادگان، مهشید (1393). طراحی و اجرای  Web-GIS آتش نشانی با تأکید برمسیریابی بهینه به محل حادثه، پایان‌نامه کارشناسی ارشد سنجش از دور و GIS، به راهنمایی کاظم رنگزن ، دانشکده علوم زمین، دانشگاه شهید چمران اهواز.
5- غفاری‌زاده دیزجی، هما. (1388). دسته‌بندی زیردریایی‌ها با استفاده از سیستم استنتاج فازی، (پایانامه کارشناسی ارشد)، دانشگاه اراک. 
6- کابلی‌زاده، م. (1392). بازسازی سه بعدی اتوماتیک ساختمان در مناطق شهری با استفاده از منطق فازی و منحنی‌های فعال هندسی، (رساله دکتری گرایش فتوگرامتری)، دانشگاه صنعتی خواجه نصیر الدین طوسی، تهران.
7- کوره‌پزان دزفولی، ا. (1387)، اصول تئوری مجموعه‌های فازی و کاربرد آن در مدل سازی مسائل مهندسی آب،: انتشارات جهاد دانشگاهی واحد صنعتی امیرکبیر.
8- Agugiaro, G., Nex, F., Remondino, F., De Filippi, R., Droghetti, S., & Furlanello, C. (2012). Solar Radiation Estimation on Building Roofs and Web-Based Solar Cadaster, ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, I-2, 177-182.
9- Brumen, M., Luka, N., & Zalik, B. (2014). GIS Application for Solar Potential Estimation on Buildings Roofs. Paper presented at the The Second International Conference on Building and Exploring Web Based Environments.
10- Carl, C. (2014).  Calculating solar Photovoltaic Potential on Residental Rooftops in Kailua Kona, Hawaii. (Master of Science Geographic Information Science and Technology), Faculty of the USC Graduate School University of Southern California.
11- ESRI. (2014). How solar radiation is calculated.   Retrieved from http://desktop.arcgis.com/en/arcmap/10.3/ tools/spatial-analyst-toolbox/how-solar-radiation-is-calculated.htm.
12- Foong, K. C., Chee, C. T., & Wei, L. S. (2010). Adaptive network fuzzy inference system (ANFIS) handoff algorithm. Paper presented at the International Conference on Future Computer and Communication.
13- Fu, P., & Rich, P. M. (1999). Design and implementation of the Solar Analyst: an ArcView extension for modeling solar radiation at landscape scales. Paper presented at the Proceedings of the Nineteenth Annual ESRI User Conference.
14- Fu, P., & Rich, P. M. (2000). A geometric solar radiation model with applications in agriculture and forestry. Computers and electronics in agriculture, 37(1), 25-35.
15- Gillavry, E.M. (2000). Cartographic aspects of web GIS – Software, Department of Cartography Utrecht University.
16- Holstein, B. (2015). Analysing Photovoltaic Potential Using a Geographic Information System: a Case Study of Prince William County Public Schools (Master of Environmental Science and Policy), Faculty of the USC Graduate School University of George Mason University.
17- Hoogwijk, M. M. (2004). On the global and regional potential of renewable energy sources, Universiteit Utrecht, Faculteit Scheikunde.
18- Kauria, L. (2016). Developing a Global Location Optimization Model for Utility-Scale Solar Power Plants. (Master’s thesis Geography Geoinformatics), University of Helsinki Faculty of Science.
19- Li, D. (2013). Using GIS and Remote Sensing Techniques for Solar Panel Installation Site Selection (Master of Science in Geography), University of Waterloo.
20- Mahtta, R., Joshi, P., & Jindal, A. K. (2014). Solar power potential mapping in India using remote sensing inputs and environmental parameters. Renewable Energy, 71, 255-262.
21- Ramachandra, T., Jain, R., & Krishnadas, G. (2011). Hotspots of solar potential in India. Renewable and Sustainable Energy Reviews, 15(6), 3178-3186.
22- Šúri, M., & Hofierka, J. (2004). A new GIS based solar radiation model and its application to photovoltaic assessments. Transactions in GIS, 8(2), 175-190.
23- Šúri, M., Huld, T. A., & Dunlop, E. D. (2005). PV-GIS: a web-based solar radiation database for the calculation of PV potential in Europe. International Journal of Sustainable Energy, 24(2), 55-67.