نوع مقاله : مقاله پژوهشی


1 دانشیار گروه سنجش از دور و GISد انشکده جغرافیا- دانشگاه تهران

2 استاد دانشکده مهندسی نقشه برداری، گروه GIS ، دانشگاه صنعتی خواجه نصیرالدین طوسی

3 دانشجوی کارشناسی ارشد گروه تخصصی سنجش از دور و سیستم اطلاعات جغرافیایی، دانشکده منابع طبیعی و محیط زیست، دانشگاه آزاد اسلامی، واحد علوم تحقیقات تهران،


رشد و توسعه شهرها در سال های اخیر و به تبع آن افزایش جمعیت شهرها، مشکلات عدیده ا ی را برای ساکنان به وجود آورده است که از آن جمله معضلات ایجاد شده در حمل و نقل است.حمل و نقل و جابجایی انسان و کالا فعالیتی مهم برای هر جامعه انسانی به شمار می آید و تأثیرات عمده ای بر روی الگوهای زندگی و تعاملات اجتماعی مردم خواهد داشت.  ایستگاه های اتوبوس یکی از اجزای مهم این سیستم به شمار می آید و لازم است ایستگاه ها در محل هایی تعبیه شوند که باعث افزایش پوشش این سیستم در مناطق مختلف شهر شوند.  لذا لازم است ایستگاه های سیستم اتوبوس رانی بر اساس چگونگی توزیع جمعیت و تنوع کاربری ها در مناطق مختلف شهری، طوری مکان یابی گردند که علاوه بر افزایش دسترسی کاربران به این سیستم، زمان سفر را نیز کاهش دهند.بر اینا ساس در پژوهش حاضر به برنامه ریزی مکانی ـ زمانی ارائه خدمات حمل و نقل شهری عمومی با استفاده از مدل های مکان مبنا در منطقه  6  تهران پرداخته شد.  پس از مطالعه و بررسی های لازم بر روی منطقه موردنظر،  17  شاخص در قالب سه معیار دسترسی، معیار جمعیتی و وضعیت تردد تعیین گردید.  به منظور ارزیابی وضعیت ایستگاه های موجود و پیشنهاد ایستگاه های جدید در منطقه مورد مطالعه از نتایج مدل تحلیل شبکه  (ANP) و مدل زمانی آلن[1]، بهره برده شد.  نتایج تحقیق نشان داد که از لحاظ مکانی، از کل مساحت  1557.5 هکتاری منطقه حدود 51 درصد در وضعیت مناسب و نسبتاً مناسب،  30.45 درصد وضع متوسط و حدود  35.1 درصد از کل مساحت منطقه در وضعیت نسبتاً نامناسب و نامناسب قرار دارد؛ و از لحاظ زمانی، از  246 ایستگاه موجود و پیشنهادی،  17  ایستگاه دارای اشتراک زمانی نمی باشند،  229 ایستگاه دارای اشتراک زمانی می باشند، بنابر این از ایستگاه های دارای اشتراک زمانی برای سرویس دهی بیشتر استفاده میشود.  پیشنهاد میشود برای ایستگاه های دارای پنج اشتراک، اتوبوس هر  5  دقیقه یکبار، برای ایستگاه های دارای چهار اشتراک نیز هر  5  دقیقه، برای ایستگاه های دارای سه اشتراک هر  10 دقیقه، برای ایستگاه های دارای دو اشتراک هر 15  دقیقه و برای ایستگاه های دارای یک اشتراک هر  20  دقیقه اتوبوس از ایستگاه عبور کند.

[1]- Allen’s Temporal Interval Algebra


عنوان مقاله [English]

Spatio-Temporal planning of urban public transport services using location-based models - Case study: Bus stations in 6th district of Tehran Municipality

نویسندگان [English]

  • Najmeh Neisany Samany 1
  • Ali Asghar Alesheikh 2
  • Zahra Abedi 3

1 Associate professor Department of remote sensing and GIS, Faculty of geography.Umiversity of Tehran

2 Full professor. Department of Geospatial Information System, Faculty of geodesy and geomatics engineering K.N.Toosi University of Technology.Tehran.Iran

3 Msc. student. Department of remote sensing and GIS, Islamic Azad University

چکیده [English]

Extended Abstract
Since urban bus networkis considered to be the most important part of transportation system in developing countries, optimal design of this networkis crucial for improving the status of public transportation. To reach this aim, it is necessary to locate these stations in areas which increase users of this system in different parts of the city. The present study seeks to identify suitable places for the construction ofproposedbus stations in the 6th district of Tehran municipality using GIS functions, Analytic Network Process and Allen’s temporal model.Proposedstationswere then optimized.
 Materials & Methods:
Based on necessary investigations about the 6th district of Tehran, 17 indicators were identified: access criterion (sub criteria: business, administrative, medical, religious, educational and sports centers, and urban facilities, subway, roads), demographic criterion (sub criteria:population and employeesdensity) and traffic status (sub criteria: BRT lines, one way and two way streets, street width, traffic load, slop of the area and kind of road).
At the first phase, questionnaires were distributed among 35 experts of transportation and traffic. Based on the results of DEMATEL questionnaires and their analysis in MATLAB, the severity of relationship between the criteria were calculated and pairwise comparison questionnaires were designed.
Using DEMATEL technique, the presence or absence of a relationship between the aforementioned criteria and sub criteria was investigated. As a decision makingtechnique based on pairwise comparison, DEMATEL uses experts’ judgments to extractelements of a system and find a systematic structure for them using the principles of graph theory. This technique provides a hierarchical structure of the factors of the system along with their corresponding relationship, and determines the effect of these relations in the format of numerical scores.  DEMATEL technique is used to identify and investigate the mutual relationships between criteria and to produce a map of network relations.
The ANP model not only calculates the relationship between the criteria, but also the relative weight of each criterion. The result of these calculations make a supermatrix, from which it is possible to derive dependency between each criterion and selection and their weights. An increase in this weight shows higher priority, so it is possible to choose the best option. (Saa’ti, 2003)
It is possible to calculate ANP process in both Super Decision and and ANP-solver software. After calculating weight of the criteria, spatial layers are created in GIS software and finally suitable digital layer is created through integration of the criteria. The obtained digital layer shows the best spatial zones for the construction of bus stations in the study area.
 Results & Discussion:
Time and place are inseparable parts of each phenomenon in our world. Since, the first step of processing and analyzing a phenomenon in spatial information systemsismodeling, creating a model with necessary capabilities to include temporal dimension is inevitable. One of the main requirements of spatio-temporal modelling is the ability to investigate the topological temporal -spatial relations betweendifferent phenomena. The present study used Allen’s Interval Algebra to extract all relations between different dimensions of time. These include 3 relations between two temporal events, 6 relations between one event and a time mode, and 13 relations between two time modes.
Based on Allen’s model, the rush hours were investigated and common temporal – spatial features of each station were obtained. New stations were proposed based on existing stations and the desirable layer, and a desirable time was determined for the buses to pass stations based on land uses around the stations, the rush hours of each land useand common temporal – spatial features of each station (based on Allen’s model).
Results indicate that the ANP and Allen model can only search a very small number of possible answers and reach the required answer. 6thdistrict of Tehran municipality covers an area of 1557.65 hectares, from which 18.10% are in a suitable condition, 21.41% are relatively suitable, 30.45% are moderate, 23.88% are relatively improper and 6.17% are completely improper.
281.923 hectares of the district has no problem regarding the access criterion and donot need a station. This district has 185 bus stations and 61 new stations are proposed (a total number of 246).
From the aforementioned 246 stations, 17 stations do not have a common schedule, 87 stations have a common point in their schedule, 89 stations have 2, 42 have 3, 10 stations have 4 and one station have 5 common points in their schedule.
In terms of time,42.28% stations are in a suitable condition, 36.18% are relatively suitable, 17.07% are moderate, 4.07% are relatively improper and 0.41% are completely improper.
Accordingly it is recommended that a bus should pass every 5 minutesfrom stations with 5 and 4 common points in their schedule.For stations with 4 common points in their schedule, this time reaches 10 minutes.Stations with two common points in their schedule need a bus every 15 minutes and stations with 1 common point in their schedule need a bus every 20 minutes.

کلیدواژه‌ها [English]

  • Spatio
  • temporal model
  • Allen’s model
  • DEMATEL technique
  • Bus station
1.ابوطالبی اصفهانی، رحیمی، نادی، عادلی مقدم؛ محسن، امیرمسعود، سعید، محسن؛ 1397 ؛تعیین مسیر بهینه خطوط شبکه اتوبوس ‌رانی با استفاده از (ANP)  در محیط نرم ‌افزار GIS جهت بهبود شاخص ‌های مدیریتی و افزایش بهره‌وری سیستم، پژوهش نامه حمل و نقل، دوره  15،شماره 1، 119 – 105.
2. بابایی مراد، عسگری؛ بهناز، علی؛  1394؛ تأثیر ساختار فضای شهری بر میزان تقاضای حمل و نقل شهری، پانزدهمین کنفرانس بین‌ المللی حمل ونقل.
3. زندی، سلیمانی مقدم، داوودی؛ رحمان، هادی، ارسلان؛  1396؛ مکان ‌گزینی ایستگاه ‌های اتوبوس بر اساس مدل AHP  با استفاده از GIS (مطالعه موردی:  شهر ایذه). فصل ‌نامه جغرافیا و برنامه ‌ریزی شهری چشم انداز زاگرس، دوره نهم، شماره 3 .
4.عراقی حشمتی نیا، قیاسی؛ مرتضی، امید، رامین؛ 1392 ؛ ارزیابی شاخص ‌های قابل استفاده و دسترسی در سیستم حمل و نقل اتوبوس رانی، سیزدهمین کنفرانس بین ‌المللی حمل و نقل و ترافیک.
5.نادی، سعید؛  1391؛ مسیریابی کاربرپسند با استفاده از داده ‌های ترافیک زمانمند، تصادفی و آنی، پایان نامه دکتری، دانشکده فنی، دانشگاه تهران.
6.نیسانی سامانی، دلاور، ملک، آقاطاهر؛ نجمه، محمودرضا، محمدرضا، رضا؛1394 ؛ مدل ‌سازی ارتباطات مکانی زمانی در یک سیستم راهیابی بافت آگاه با استفاده از سفارشی سازی جبر چند بازه ‌ای فازی، نشریه علمی ـ پژوهشی علوم و فنون نقشه ‌برداری، دوره پنجم، شماره2 .
7.وارثی، شیران، عزیزی حسنوند؛ حمیدرضا، غلامرضا، حدیث؛  1394؛ مکان ‌یابی ایستگاه ‌های اتوبوس با مدل ANP و منطق فازی درGIS  ( نمونه موردی:  شهر خرم آباد). نشریه پژوهش و برنامه ‌ریزی شهری، دوره  6، شماره  23، دانشگاه اصفهان،اصفهان.
8.یزدان پناهی، ملکی ؛ ملیسا، کیمیا؛  1390؛ بررسی جایگاه حمل و نقل در توسعه اقتصادی پایدار، اولین کنفرانس اقتصاد شهری ایران.
9- Adebola, O., &Enosko, O. (2012). Analysis of Bus-stops locations using Geographic Information System in Ibadan North LGA Nigeria. Industrial Engineering Letters, ISSN, 2224-6096.
10- Afyouni I., C. Ray and Ch. Claramunt (2012) Spatial models for indoor and context-aware navigation systems: a survey. Journal of Spatial Information Science 4(1): 85- 123.
11- Anand, G., Kodali, R., &Dhanekula, C. S. (2012). An application of analytic network process for selection of a plant location: a case study. International Journal of Services and Operations Management, 12(1), 35-66
12- Daniels, R., & Mulley, C. (2013). Explaining walking distance to public transport: The dominance of public transport supply. Journal of Transport and Land Use, 6(2), 5-20
13- Dikmen, Isik, M.T, Birgonul (2007), Using analytic network process for performance measurement in construction. College of Architecture, Georgia Institue of Technology, USA,1-11.
14- Ervin, S. M. (2012). Geodesign Futures – Nearly 50 predictions. Speech at DLA 2012 Conference: Geodesign, 3D Modeling, and Visualisation.
15- Fisher, T. (2014). On the rationale, definition and history of Geodesign.Speech at the Geodesign Conference in Copenhagen.
16- Henrik hall, carl (2006) a framework for evalution and design of an integrated public transportion department of science and technology, link opings university.
17- Holzmann C. and A. Ferscha (2010) A framework for utilizing qualitative spatial relations between networked embedded systems. Journal of Pervasive and Mobile Computing, 6: 362-381.
18- Hsin-Hung Lin ,Jui -Hung Cheng . (2018). Design process by integrating DEMATEL, and ANP methods. Proceedings of IEEE International Conference on Applied System Innovation 2018 IEEE ICASI 2018- Meen, Prior & Lam (Eds).
19- Ibeas, Á.,dell’Olio, L., Alonso, B., &Sainz, O. (2010). Optimizing bus stop spacing in urban areas. Transportation research part E: logistics and transportation review, 46(3), 446-458.
20- Khitha, V .Govil, S., Gis in Public Transportation, Proc, of the 6th Annual international Conference – map India 2003, 28-30 Juanuary , New Delhi , india , pp. 1-6,2003.
21- Lee, S. G., and M. D. Hickman. )2011(. Travel pattern analysis using smart card data of regular users. Proceedings of the 90th Annual Meeting of the Transportation Research Board, Washington, DC.
22- Li, J. and Wong, D.W. (2014), STModelViz: A 3D spatiotemporal GIS using aonstraint-based approach. Computers, Environment and Urban Systems. vol. 45, pp. 34-49.
23- Lin, Yu-Hsin, Kune-Muh Tsai, Wei-Jung Shiang, Tsai-Chi Kuo, and Chih-Hung Tsai (2009) Research on using ANP to establish a performance assessment model for business intelligence systems, Expert Systems with Applications, Vol. 36, pp. 4135-4146.
24- Ma, L., Deng, M., Wu, J. and Liu, Q. (2015), Modeling spatiotemporal topological relationships between moving object trajectories along road networks based on  egion connection calculus. Cartography and Geographic Information Science. vol. 42, pp. 1-15.
25- Masoomi, Z., Mesgari, M. S., &Hamrah, M. (2013). Allocation of urban land uses by Multi-Objective Particle Swarm Optimization algorithm. International Journal of Geographical Information Science, 27(3), 542-566.
26- Olsson T., T. Kakkainen, E. Lagerstam and L. Venta- Olkonen (2012) User evaluation of mobile augmented reality scenarios. Journal of Ambient Intelligence and Smart Environments (JAISE),4:29-47.
27- Paradis, T., Treml, M., &Manone M. (2013). Geodesign meets curriculum design: integrating Geodesign approaches into undergraduate programs, Journal of Urbanism: International Research on Placemaking and Urban Sustainability, 6(3), 274-301. DOI: 10.1080/17549175.2013.788054.
28- Song, M., Li, W., Zhou, B. and Lei, T. (2016), Spatiotemporal data representation and its effect on the performance of spatial analysis in a cyber infrastructure environment – A casestudy with rasterzonal analysis. Computers & Geosciences. vol. 87, pp. 11-21.
29-Soomro,T.R,Mahmood,R.,Path. (2015) . Path Analysis Using ArcGis Web API , Science and Education Publishing.
30- SzabolcsDuleba ,Sarbast Moslem.(2018). Examining Pareto optimality in Analytic Hierarchy Process on Real Data: An Application in Public Transport Service Development.https://doi.org/10.1016/j.eswa. 2018. 08.049.
31- Tzeng, G.H.Chiang and C.W. Li,2007. Evalution intertwined effectsin e-learning programs.A novel hybrid mcdm model based on DEMATEL. Exp. Stst. Appl., 36:1444-1458.
32- Worboys, M.F. (2003), “Event oriented approaches to spatiotemporal information,” Proc. of the International Workshop on Next Generation Geospatial Information, Cambridg, Boston, USA.