نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیارگروه مهندسی نقشه برداری، دانشکده فنی و مهندسی مرند، دانشگاه تبریز، آذربایجان شرقی، ایران

2 مربی آموزشی، گروه مهندسی نقشه برداری، دانشکده فنی و مهندسی دانشگاه بجنورد، خراسان شمالی،ایران

چکیده

در این تحقیق بررسی و مقایسه دقت تولیدات مختلف چهار نرم ­افزار تخصصی فتوگرامتری پهپادمبنا، Inpho UASmaster (UASmas) ، Photomodeler UAS (PhUAS) ،  Agisoft metashape (AgisMesh) و MapperPix4D،  برای مدل­ سازی سه ­بعدی در مناطق شهری و غیرشهری باحداقل نقاط کنترل زمینی انجام گرفت. برای این منظور، تولیدات مختلف این نرم ­افزارها بر روی چهار سری داده، دو سری مربوط به ایران و دو سری مربوط به دیگر کشورها، از مناطق بایر، مسکونی، فضای سبز و مناطقی با بافت یکنواخت، به صورت کمی و کیفی مورد ارزیابی قرار گرفتند. نتایج کیفی بصری نشان  داد که نرم ­افزار AgisMesh در مدل سازی سه ­بعدی انواع سطوح در همه مناطق تست بهترین نتایج داشت ولی در بازسازی لبه ­های ساختمان ­ها در مناطق شهری عملکرد ضعیفی دارد. در مقابل Pix4D در مناطق با بافت یکنواخت نتایج ضعیفی داشته ولی در تشخیص اختلاف ­ارتفاع و بازسازی لبهء ساختمان­ ها، قوی تر عمل می­ کند. در بررسی­ های­ کمی،  تولیدات این نرم ­افزارها ابتدا با استفاده از نقاط چک و سپس با انتخاب نقاط تصادفی در سه کلاس مختلف، مورد ارزیابی قرار گرفتند. نتایج نقاط چک با در نظر گرفتن خطای ریشه مربعی متوسط، به ترتیب 2/82، 2/63، 5/28 و 3/03  سانتی متر در  AgisMesh، UASmas، Pix4D و PhUAS حاصل شد. همچنین، نتایج نقاط تصادفی در سه منطقه مسکونی، بایر و فضای سبز نشان داد که UASmas به ترتیب دقت ­های 1/83، 1/20 و 2/74 سانتی متر، PhUAS دارای دقت­ های 6/90، 2/96 و 7/24 سانتی متر، Pix4D دارای دقت­ های 4/72، 3/46 و 3/59 سانتی متر  نسبت به AgisMesh داشتند.

کلیدواژه‌ها

عنوان مقاله [English]

Analysis and comparison of the exactness of specialist drone-based software products in urban and exurban region

نویسندگان [English]

  • Hassan Emami 1
  • Seyyed Ghasem Rostami 2

1 Assistant Professor, Marand Engineering Faculty, University of Tabriz, Tabriz-Iran,

2 Instructor, Surveying Engineering Department, Faculty of Engineering, University of Bojnord

چکیده [English]

Extended Abstract
Introduction
Unmanned Aerial System (UAS) photogrammetry now provides a low-cost, fast, and effective approach to real-time acquisition of high resolution and digital geospatial information, as well as automatic 3D modeling of objects, for a variety of applications including topographical mapping, 3D city modelling, orthophoto generation, and cultural heritage preservation. UASs are known by a variety of names and acronyms, including aerial robots or simply drones, with UAV and drone being the most commonly used terminology. Because of the versatility of their on-board Global Navigation Satellite System (GNSS) navigation systems and inertial measurement unit (IMU) sensors, UASs open up new options for photogrammetric projects. In this research, the ability of four different state-of-the-art and professional drone-based software packages, including AgisoftMetashape, InphoUASmaster, Photomodeler UAS, and Pix4D Mapper, to generate a high density point cloud as well as a Digital Surface Model (DSM) and true orthoimage over barren, residential, green space, and uniform textured areas in urban and exurban areas is investigated.
 
Methodology
The following are the major processes in this study: image acquisition, point cloud, DSM, DEM generation, and accuracy assessment. Data planning and acquisition are the initial steps in commencing any project. The overlapping images are initially obtained using four data sets with distinct surface feature attributes and camera kinds with different shooting situations. The data sets that must be acquired include pictures taken with FC6310 (8.8 mm), NEX-5R (5.2 mm), and Canon IXUS 220HS (4.3 mm) cameras at varied flight heights and spatial resolutions ranging from 52 to 246 m. The four data sets, two of which are connected to Iran and two of which are related to other nations, were chosen from barren, residential, green space, and uniform texture areas. GPS coordinates for these photos must also be recorded using a GPS device. This is done to geo-reference the images for improved model accuracy. The calibration of the camera must also be addressed, and its characteristics and readings must be determined at the start of the project. The images will be calibrated first in order to determine camera pose estimate. The following stage is to compare survey measurements to model measurements in order to assess the overall correctness of the 3D model. The correctness of the point cloud, DSM, and 3D textured model is next evaluated. The accuracy evaluation evaluates the orientation correctness, and measurement uncertainties in the various modeling procedures. Finally, the various products of the mentioned software packages were statistically and qualitatively evaluated.
 
Results and discussion
The outcomes of this study demonstrate the ability of commercial photogrammetric software packages to do automatic 3D reconstruction of numerous attributes across urban and exurban regions using high quality aerial imagery. This assessment employs a variety of visual and geometric measurements to assess the quality of produced point clouds as well as the performance of the four software packages. According to the visual quality findings, AgisMesh software performs better in 3D modeling of all varieties of surfaces in all locations, but badly in the reconstruction of building edges in urban regions. Pix4D software, on the other hand, performs poorly in areas with uniform texture but excels at recognizing height changes and reconstructing building site boundaries. In terms of visual outcomes, the other software falls somewhere in the middle. In quantitative tests, they were tested first with checkpoints and then with randomly selected points in three distinct classes of urban and exurban regions. Check point findings revealed that the root mean square error (RMSE) in AgisMesh, UASmas, Pix4D, and PhUAS software packages was 2.82, 2.63, 5.84, and 3.03 cm, respectively. Furthermore, quantitative findings obtained by choosing random locations revealed that UASmas had an accuracy of 1.83, 1.20, and 2.74 cm, respectively, in three residential, barren, and green space zones. In addition to the 6.90, 2.96, and 7.24 cm accuracy of the PhUAS, the Pix4D was 4.72, 3.46, and 3.59 cm more accurate than AgisMesh software in the three stated classes. Table 1 displays the assessment findings based on the RMSE criterion.
 
Conclusions
The findings of this study indicate the capacity of specialist drone-based photogrammetric software packages to automatically reconstruct 3D features from high quality aerial images over desolate, residential, green space, and uniform texture environments. In this study, all conditions and parameters in all software were regarded the same, and owing to the similarity of statistical parameters, number of points, and so on in various products, only the discrepancies and their differences were discussed in depth. Various visual and geometric parameters are utilized in this evaluation to analyze the quality of generated 3D point clouds, DSM, and true orthophoto. AgisMesh offers a simple and easy user interface in general and visual assessment, and it is possible to describe and execute data from any camera, even unknown models, without utilizing coordinate images by utilizing powerful processing methods. In contrast, the UASmas program has a highly complex user interface, and the user must be familiar with all of the concepts of photogrammetry as well as the camera parameters file, which is not readily set. It is possible to manually alter restricted processing results in Pix4D. As a result, faulty results are not obtained in regions with the same texture, while production points in other areas are of poor quality. When compared to the other three applications, PhUAS fared poorly aesthetically and geometrically. The user must enter many parameters or thresholds in the processing phases. Therefore, the user must be sufficiently informed of the specifics of photogrammetric and machine vision algorithms to understand that the quality of software output is largely reliant on these factors. Furthermore, check point findings revealed that theRMSE in AgisMesh, UASmas, Pix4D, and PhUAS software packages was 2.82, 2.63, 5.84, and 3.03 cm, respectively. Furthermore, quantitative findings obtained by picking random points revealed that UASmas has an accuracy of 3.51 cm, PhUAS has 10.45 cm, and Pix4D was 6.87 cm more accurate than AgisMesh in three residential, barren, and green space regions. Taking into account all of the benefits and evaluations of visual and geometric correctness, the performance and accuracy of AgisMesh, UASmas, Pix4D, and PhUAS may be ranked from one to four, accordingly.
 

کلیدواژه‌ها [English]

  • Unmanned aerial system (UAS)
  • UAV based photogrammetry
  • Specialist drone-based software
  • 3D modeling
  • and geometric accuracy
1- Aurambout, J.-P., Gkoumas, K., & Ciuffo, B. (2019). Last mile delivery by drones: an estimation of viable market potential and access to citizens across European cities. European Transport Research Review, 11(1), 1-21. doi: https://doi.org/10.1186/s12544-019-0368-2.
2- Ayamga, M., Akaba, S., & Nyaaba, A. A. (2021). Multifaceted applicability of drones: A review. Technological Forecasting and Social Change, 167, 120677. doi: https://doi.org/10.1016/j.techfore.2021.120677.
3- Balasingam, M. (2017). Drones in medicine—the rise of the machines. International journal of clinical practice, 71(9), e12989. doi: https://doi.org/10.1111/ijcp.12989.
4- Barazzetti, L., Binda, L., Scaioni, M., & Taranto, P. (2011). Photogrammetric survey of complex geometries with low-cost software: Application to the ‘G1′ temple in Myson, Vietnam. Journal of Cultural Heritage, 12(3), 253-262. doi: https://doi.org/10.1016/j.culher.2010.12.004.
5- Brach, M., Chan, J.-W., & Szymanski, P. (2019). Accuracy assessment of different photogrammetric software for processing data from low-cost UAV platforms in forest conditions. iForest-Biogeosciences and Forestry, 12(5), 435. doi: https://doi.org/10.3832/ifor2986-012.
6- Campbell, J. F., Sweeney, D., & Zhang, J. (2017). Strategic design for delivery with trucks and drones. Supply Chain Analytics Report SCMA (04 2017).
7- CHEN, P.-F., & XU, X.-G. (2020). A comparison of photogrammetric software packages for mosaicking unmanned aerial vehicle (UAV) images in agricultural application. Acta Agronomica Sinica, 46(7), 1112-1119. doi: https://doi.org/10.3724/SP.J.1006.2020.91066.
8- de Oliveira Silva, L., de Mello Bandeira, R. A., & Campos, V. B. G. (2017). The use of UAV and geographic information systems for facility location in a post-disaster scenario. Transportation Research Procedia, 27, 1137-1145. doi: https://doi.org/10.1016/j.trpro.2017.12.031.
9- Doole, M., Ellerbroek, J., Knoop, V. L., & Hoekstra, J. M. (2021). Constrained Urban Airspace Design for Large-Scale Drone-Based Delivery Traffic. Aerospace, 8(2), 38. doi: https://doi.org/10.3390/aerospace8020038.
10- Eisenbeiß, H. (2009). UAV photogrammetry. ETH Zurich.  http://hdl.handle.net/20.500.11850/20976.
11- Eisenbeiss, H., Lambers, K., Sauerbier, M., & Li, Z. (2005). Photogrammetric documentation of an archaeological site (Palpa, Peru) using an autonomous model helicopter. Paper presented at the CIPA 2005. http://nbn-resolving.de/urn:nbn:de:bsz:352-0-253687.
12- Fawcett, D., Panigada, C., Tagliabue, G., Boschetti, M., Celesti, M., Evdokimov, A., . . . Rascher, U. (2020). Multi-scale evaluation of drone-based multispectral surface reflectance and vegetation indices in operational conditions. Remote sensing, 12(3), 514. doi: https://doi.org/10.3390/rs12030514.
13- Gini, R., Pagliari, D., Passoni, D., Pinto, L., Sona, G., & Dosso, P. (2013). UAV photogrammetry: Block triangulation comparisons. Int. Arch. Photogram. Remote Sens. Spat. Inf. Sci, 1, W2.
14- Haarbrink, R., & Koers, E. (2006). Helicopter UAV for photogrammetry and rapid response. Paper presented at the 2nd Int. Workshop “The Future of Remote Sensing”, ISPRS Inter-Commission Working Group I/V Autonomous Navigation.
15- Hassanalian, M., & Abdelkefi, A. (2017).Classifications, applications, and design challenges of drones:A review. Progress in Aerospace Sciences, 91, 99-131. doi: https://doi.org/10.1016/j.paerosci.2017.04.003.
16- Honarmand, M., & Shahriari, H. (2021). Geological Mapping Using Drone-Based Photogrammetry: An Application for Exploration of Vein-Type Cu Mineralization. Minerals, 11(6), 585. doi: https://doi.org/10.3390/min11060585.
17- KABADAYI, A., Yunus, K., & YİĞİT, A. Y. (2020). Comparison of documentation cultural artifacts using the 3D model in different software. Mersin Photogrammetry Journal, 2(2), 51-58. doi:  https://dergipark.org.tr/en/pub/mephoj/issue/58058/717483.
18- Kaimaris, D., Patias, P., & Sifnaiou, M. (2017). UAV and the comparison of image processing software. International Journal of Intelligent Unmanned Systems. doi: https://doi.org/10.1108/IJIUS-12-2016-0009.
19- Khan, N. A., Brohi, S. N., & Jhanjhi, N. (2020). UAV’s applications, architecture, security issues and attack scenarios: a survey Intelligent computing and innovation on data science (pp. 753-760): Springer.
20- Ko, Y. D., & Song, B. D. (2021). Application of UAVs for tourism security and safety. Asia Pacific Journal of Marketing and Logistics. doi: https://doi.org/10.1108/APJML-07-2020-0476.
21- Liu, Y., Dai, H.-N., Wang, Q., Shukla, M. K., & Imran, M. (2020). Unmanned aerial vehicle for internet of everything: Opportunities and challenges. Computer communications, 155, 66-83. doi: https://doi.org/10.1016/j.comcom.2020.03.017.
22- Mohamed, N., Al-Jaroodi, J., Jawhar, I., Idries, A., & Mohammed, F. (2020). Unmanned aerial vehicles applications in future smart cities. Technological Forecasting and Social Change, 153, 119293. doi: https://doi.org/10.1016/j.techfore.2018.05.004.
23- Nex, F., & Remondino, F. (2014). UAV for 3D mapping applications: a review. Applied geomatics, 6(1), 1-15. doi: https://doi.org/10.1007/s12518-013-0120-x.
24- Orengo, H. A., Garcia‐Molsosa, A., Berganzo‐Besga, I., Landauer, J., Aliende, P., & Tres‐Martínez, S. (2021). New developments in drone‐based automated surface survey: Towards a functional and effective survey system. Archaeological Prospection. doi: https://doi.org/10.1002/arp.1822.
25- Pádua, L., Adão, T., Hruška, J., Marques, P., Sousa, A., Morais, R., . . . Peres, E. (2018). UAS-based photogrammetry of cultural heritage sites: A case study addressing Chapel of Espírito Santo and photogrammetric software comparison. Paper presented at the Proceedings of the International Conference on Geoinformatics and Data Analysis. doi: https://doi.org/10.1145/3220228.3220243.
26- Panday, U. S., Pratihast, A. K., Aryal, J., & Kayastha, R. B. (2020). A review on drone-based data solutions for cereal crops. Drones, 4(3), 41. doi: https://doi.org/10.3390/drones4030041.
27- Radoglou-Grammatikis, P., Sarigiannidis, P., Lagkas, T., & Moscholios, I. (2020). A compilation of UAV applications for precision agriculture. Computer Networks, 172, 107148. doi: https://doi.org/10.1016/j.comnet.2020.107148.
28- Rauch, M. S. (2021). Drones in Military Warfare: The moral and emotional implications of an emerging technology. Paper presented at the Academy of Management Proceedings. doi: https://doi.org/10.5465/AMBPP.2021.235.
29- Remondino, F., Barazzetti, L., Nex, F., Scaioni, M., & Sarazzi, D. (2011). UAV photogrammetry for mapping and 3d modeling–current status and future perspectives. International archives of the photogrammetry, remote sensing and spatial information sciences, 38(1), C22.
30- Salvo, G., Caruso, L., & Scordo, A. (2014). Urban traffic analysis through an UAV. Procedia-Social and Behavioral Sciences, 111, 1083-1091. doi: https://doi.org/10.1016/j.sbspro.2014.01.143.
31- Sona, G., Pinto, L., Pagliari, D., Passoni, D., & Gini, R. (2014). Experimental analysis of different software packages for orientation and digital surface modelling from UAV images. Earth Science Informatics, 7(2), 97-107. doi: https://doi.org/10.1007/s12145-013-0142-2.
32- Surmann, H., Kaiser, T., Leinweber, A., Senkowski, G., Slomma, D., & Thurow, M. (2021). Small Commercial UAVs for Indoor Search and Rescue Missions. Paper presented at the 2021 7th International Conference on Automation, Robotics and Applications (ICARA). doi: https://doi.org/10.1109/ICARA51699.2021.9376551.
33- Suziedelyte Visockiene, J., Brucas, D., & Ragauskas, U. (2014). Comparison of UAV images processing softwares. Journal of Measurements in Engineering, 2(2), 111-121.
34- To, A., Liu, M., Hairul, M. H. B. M., Davis, J. G., Lee, J. S., Hesse, H., & Nguyen, H. D. (2021). Drone-based AI and 3D Reconstruction for Digital Twin Augmentation. arXiv preprint arXiv:2106.03797.
35- Trubia, S., Curto, S., Severino, A., Arena, F., & Puleo, L. (2021). The use of UAVs for civil engineering infrastructures. Paper presented at the AIP Conference Proceedings. doi: https://doi.org/10.1063/5.0047880.
36- Unger, J., Reich, M., & Heipke, C. (2014). UAV-based photogrammetry: monitoring of a building zone. International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences-ISPRS Archives 40 (2014), 40(5), 601-606. doi: https://doi.org/10.5194/isprsarchives-XL-5-601-2014.
37- Uysal, M., Toprak, A., & Polat, N. (2015). DEM generation with UAV Photogrammetry and accuracy analysis in Sahitler hill. Measurement, 73, 539-543. doi: https://doi.org/10.1016/j.measurement.2015.06.010.
38- Verhoeven, G. (2011). Taking computer vision aloft–archaeological three‐dimensional reconstructions from aerial photographs with photoscan. Archaeological prospection, 18(1), 67-73. doi: https://doi.org/10.1002/arp.399.
39- Watanabe, Y., & Kawahara, Y. (2016). UAV photogrammetry for monitoring changes in river topography and vegetation. Procedia Engineering, 154, 317-325. doi: https://doi.org/10.1016/j.proeng.2016.07.482.
40- Yaacoub, J.-P., Noura, H., Salman, O., & Chehab, A. (2020). Security analysis of drones systems: Attacks, limitations, and recommendations. Internet of Things, 11, 100218. doi:  https://doi.org/10.1016/j.iot.2020.100218.