نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانش آموخته کارشناسی ارشد گروه مهندسی نقشه برداری.دانشکده فنی عمران.دانشگاه تبریز.تبریز.آذربایجان شرقی

2 دانشیارگروه مهندسی نقشه برداری- دانشکده عمران -دانشگاه تبریز- تبریز- ایران

3 دانشیارگروه مهندسی نقشه برداری، دانشکده عمران، دانشگاه تبریز

چکیده

با گسترش تکنولوژی لیزر‌اسکنر و لایدار و در نظر‌گرفتن برتری‌های این تکنولوژی و اخذ داده‌های مکانی محیط و اشیاء، استفاده از این فناوری روز‌به‌روز بیش‌تر شده‌است. این تکنولوژی توانایی استخراج نقاط از سطوح خارجی محیط و اشیاء در حجم بالا و در مدت زمان کوتاه را داشته که با توجه به امکان جا‌به‌جایی آسان لیزر اسکنر‌ها، ابر‌نقاط مربوط به محیط و اشیا معمولاً از زوایای متفاوتی اخذ می‌شوند که هر کدام در یک سیستم مختصات متفاوت قرار دارند و همگی باید به یک سیستم مختصات واحد منتقل شوند. به این منظور ابتدا باید جفت نقاط متناظر در هر مجموعه ابر‌نقاط معین شوند و سپس با استفاده از فرآیندی نقاط متناظر روی هم بیافتند تا مدل سه‌بعدی از طریق مجموعه‌های ابرنقاط ایجاد شود. یافتن مناسب‌ترین جفت نقاط متناظر در مجموعه‌های ابر‌نقاط از مهم‌ترین و چالش بر‌انگیزترین مراحل بازسازی سه‌بعدی مدل‌های مورد‌نظر محیط و اشیاء است. توصیفگر‌های سه‌بعدی از جمله ابزار‌های مناسب برای تعیین جفت نقاط متناظر در مجموعه‌های ابر‌نقاط هستند. این توصیفگر‌ها برای هر نقطه‌ی منفرد در ابر‌نقاط، مجموعه‌ای از اطلاعات را به منظور کمک به تعیین نقاط مشابه در هر مجموعه ابرنقاط می‌سازد. تعریف یک توصیفگر سه‌بعدی که از پیچیدگی محاسباتی کم و قدرت توصیفگری بالایی برخوردار باشد، می‌تواند به یافتن جفت نقاط متناظر صحیح و در ادامه مدل‌سازی سه‌بعدی مجموعه‌های ابرنقاط کمک شایانی کند. در این پژوهش یک توصیفگر سه‌بعدی هندسی-مکانی پیشنهاد داده‌شده‌است که از هر دو ویژگی‌هندسی و مکانی به صورت توأم استفاده می‌کند. با توجه به آزمایش‌های انجام شده بر روی دو دسته مجموعه داده با ساختارهای متفاوت، توصیفگر سه‌بعدی پیشنهادی در مقایسه با توصیفگر‌هایی که تنها از یک ویژگی مکانی یا هندسی استفاده می‌کنند، قدرت توصیفگری بالاتری دارد.

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Providing an Integrated Descriptor Based on Spatial and Geometric Properties for Three-Dimensional Point Cloud Matching

نویسندگان [English]

  • Shokoufeh Farhadi 1
  • Nazila Mohammadi 2
  • Amin Sedaghat 3

1 Master of Surveying Engineering, University of Tabriz

2 Associate Professoe , Department of Surveying, Tabriz University, Tabriz, Iran

3 Associate Professor, Department of Surveying Engineering, University of Tabriz

چکیده [English]

Extended Abstract
Introduction
Reconstruction of 3D models and their use in photogrammetry and remote sensing has been considered as the most important and challenging topics in recent years. With the development of laser scanner technology and obtaining spatial data of the environment and objects, the use of this technology has increased nowadays. This technology extracts points from the external surfaces of the environment or objects in high volume, in a short time, which is called point cloud.
Due to laser scanners’ easy placement, point clouds are usually taken from different angles, so they define in the different coordinate systems, which must be unified to give a complete 3d view of the object. The process is considered as “registration”.
For this purpose, first, the corresponding pairs of points in each point cloud must be determined and then they must be matched correctly.after all a three-dimensional model is created.
Finding the best pair of corresponding points in the Point clouds as well as estimating the optimal error metric and the displacement between pairs of corresponding points is one of the most important and challenging steps of three-dimensional reconstruction.
Three-dimensional descriptors are one of the most suitable tools for determining the corresponding pairs of points in Point cloud. These descriptors create a set of information for every single point to determine the corresponding points in each Point cloud. Defining a three-dimensional descriptor whose computation complexity is low but its descriptive is high, can help to find the correct pair of points for 3d registration and modeling.
Materials & Methods
The main purpose of the present study is to define a strong three-dimensional descriptor to find the best corresponding pair of points to reconstruct the three-dimensional model.
The descriptor proposed in this study consists of two single local three-dimensional descriptors based on the spatial and geometric properties of the Point cloud, which combine to form a strong descriptor to determine corresponding points in the Point cloud.
Laser scanners extract a large volume of points from surfaces in a short period of time, which due to the reflection of laser beams, Point cloud may contain noise and mistakes. In the process of analyzing and using the data, these mistakes cause problems and should be removed in the pre-processing phase. To define the desired descriptor, in the pre-processing phase the Point cloud gets ready to extract the required properties.
The Statistical removal filter method is used to remove the noise and the voxel grid filter method is used to improve the speed of future preprocessing.
Each point in the neighborhood of Query Point provides a lot of that can be used to create the desired descriptor.
In the present study, by determining the appropriate neighborhood radius and Nearest Neighbor Search (NNS) method, using the k-dimensional tree, correct and efficient neighborhoods are determined for each point.
In the first step, a spatial descriptor is formed for each point. This descriptor is defined in the form of a histogram based on two distances for the point in its neighborhood. In the second step, the angles of the normal vectors of the Point cloud in different states are used to create a descriptor based on geometric information. In this research, two features called and have been used, which for each descriptor is formed in the form of a histogram. Then the spatial descriptor is combined with each of the descriptors based on the geometric feature and forms two desired descriptors.
To ensure the accuracy of the matching process based on the proposed descriptor, by assigning a suitable threshold for the basis of the distance between the Query point and its neighborhood, with the corresponding point of the Query point and its neighborhood in the second Point Cloud, incorrect correspondences are detected and removed. Next, the remained correct corresponding pairs of points are used to reconstruct the three-dimensional model.
Results & Discussion
In this research, two sets of Point cloud have been used to evaluate the proposed process. These two data sets are obtained in such a way that in the first data set the perspective and angle of view and in the second data set the position and arrangement of objects are changed.
By forming descriptors based on spatial and geometric features in different neighborhood radii and then forming a proposed combination descriptor based on what has been mentioned, it can be considered that combining the geometric descriptors with spatial descriptors, in cases where The two datasets have less relative overlap or more relative rotation than each other, in contrast to the position shift, leading to improved descriptor performance and increased matching accuracy.
Considering the results obtained from the comparison of the proposed descriptors, it can be said that because of the existence of two different radii in each part of descriptors based on spatial and geometric relations in the proposed descriptors, it turns out that the required descriptor is high quality.
On the other hand, the properties used in these descriptors are also resistant to changing the position of objects and have high efficiency in mentioned category. Also, the process of identifying and eliminating incorrect correspondences improves the matching process and increases the matching percentage of similar points up to 25% in the study data set.
Conclusion
The results of comparing the set of Point Cloud studied using the proposed descriptor indicate that this descriptor is more efficient in cases where two data sets rotate relative to each other, compared to cases where the location of the data pair has changed relative to each other. And the accuracy of the comparison obtained from the proposed method, in this case, increases compared to other data pair placement modes.

کلیدواژه‌ها [English]

  • Point cloud
  • Registration
  • Descriptor
  • Geometric Properties
  • Spatial Propertied
1- باغانی؛  ولدان زوج ؛ مختارزاده (1399). روشی نوین برای جانمایی ابرهای نقاط زمینی محلی در ابرنقاط هوایی سراسری. نشریه علمی-پژوهشی مهندسی فناوری اطلاعات مکانی، 8(4)، 1-26.
2- رضائی؛  رضائیان؛  درهمی (1400). توصیفگر موضعی جدید با استفاده از نگاشت مرکاتور به‌منظور تشخیص اشیای سه‌بعدی. پردازش علائم و داده‌ها، 19(1)، 111-124.
3- Amini Amirkolaee, H., & Arefi, H. (2017). 3D Semantic Labeling using Region Growing Segmentation Based on Structural and Geometric Attributes. Journal of Geomatics Science and Technology, 7(2), 1-16.
4 - Behley, J., Steinhage, V., & Cremers, A. B. (2012). Performance of histogram descriptors for the classification of 3D laser range data in urban environments. Paper presented at the 2012 IEEE International Conference on Robotics and Automation.
5- Brusco, M., Andreetto, M., Giorgi, A., & Cortelazzo, G. M. (2005). 3D registration by textured spin-images. Paper presented at the Fifth International Conference on 3-D Digital Imaging and Modeling (3DIM’05).
6- Bueno, M., Martínez-Sánchez, J., González-Jorge, H., & Lorenzo, H. (2016). DETECTION OF GEOMETRIC KEYPOINTS AND ITS APPLICATION TO POINT CLOUD COARSE REGISTRATION. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences, 41.
7- Curless, B., & Levoy, M. (1996). A volumetric method for building complex models from range images. Paper presented at the Proceedings of the 23rd annual conference on Computer graphics and interactive techniques.
8- Deschaud, J.-E., & Goulette, F. (2010). Point cloud non local denoising using local surface descriptor similarity. IAPRS, 38(3A), 109-114.
9- Flint, A., Dick, A., & Van Den Hengel, A. (2007). Thrift: Local 3d structure recognition. Paper presented at the 9th Biennial Conference of the Australian Pattern Recognition Society on Digital Image Computing Techniques and Applications (DICTA 2007).
10- Fritzke, B. (1995). A growing neural gas network learns topologies. Advances in neural information processing systems, 7, 625-632.
11- Frome, A., Huber, D., Kolluri, R., Bülow, T., & Malik, J. (2004). Recognizing objects in range data using regional point descriptors. Paper presented at the European conference on computer vision.
12- Guo, Y., Bennamoun, M., Sohel, F., Lu, M., & Wan, J. (2014). 3D object recognition in cluttered scenes with local surface features: A survey. IEEE transactions on pattern analysis and machine intelligence, 36(11), 2270-2287.
13- Guo, Y., Bennamoun, M., Sohel, F., Lu, M., Wan, J., & Kwok, N. M. (2016). A comprehensive performance evaluation of 3D local feature descriptors. International Journal of Computer Vision, 116(1), 66-89.
14- Hackel, T., Wegner, J. D., & Schindler, K. (2016). Fast semantic segmentation of 3D point clouds with strongly varying density. ISPRS annals of the photogrammetry, remote sensing and spatial information sciences, 3, 177-184.
15- Hana, X.-F., Jin, J. S., Xie, J., Wang, M.-J., & Jiang, W. (2018). A comprehensive review of 3D point cloud descriptors. arXiv preprint arXiv:1802.02297, 2.
16- Johnson, A. E., & Hebert, M. (1998). Surface matching for object recognition in complex three-dimensional scenes. Image and Vision Computing, 16(9-10), 635-651.
17- Kobbelt, L., & Botsch, M. (2004). A survey of point-based techniques in computer graphics. Computers & Graphics, 28(6), 801-814.
18- Li, H., & Hartley, R. (2007). The 3D-3D registration problem revisited. Paper presented at the 2007 IEEE 11th international conference on computer vision.
19- Li, L., Fu, H., & Ovsjanikov, M. (2022). WSDesc: Weakly Supervised 3D Local Descriptor Learning for Point Cloud Registration. IEEE Transactions on Visualization and Computer Graphics.
20 - Mian, A. S., Bennamoun, M., & Owens, R. (2006). Three-dimensional model-based object recognition and segmentation in cluttered scenes. IEEE transactions on pattern analysis and machine intelligence, 28(10), 1584-1601.
21- Mikolajczyk, K., & Schmid, C. (2005). A performance evaluation of local descriptors. IEEE transactions on pattern analysis and machine intelligence, 27(10), 1615-1630.
22- Moore, J. B. (1978). Statistical filtering. In Mathematical Control Theory (pp. 152-169): Springer.
23- Nuchter, A., Surmann, H., Lingemann, K., Hertzberg, J., & Thrun, S. (2004). 6D SLAM with an application in autonomous mine mapping. Paper presented at the IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA’04. 2004.
24- Orts-Escolano, S., Morell, V., García-Rodríguez, J., & Cazorla, M. (2013). Point cloud data filtering and downsampling using growing neural gas. Paper presented at the The 2013 International Joint Conference on Neural Networks (IJCNN).
25- Rusu, R. B., Blodow, N., & Beetz, M. (2009). Fast point feature histograms (FPFH) for 3D registration. Paper presented at the 2009 IEEE international conference on robotics and automation.
26 - Rusu, R. B., Blodow, N., Marton, Z. C., & Beetz, M. (2008). Aligning point cloud views using persistent feature histograms. Paper presented at the 2008 IEEE/RSJ international conference on intelligent robots and systems.
27- Rusu, R. B., Marton, Z. C., Blodow, N., & Beetz, M. (2008). Persistent point feature histograms for 3D point clouds. Paper presented at the Proc 10th Int Conf Intel Autonomous Syst (IAS-10), Baden-Baden, Germany.
28- Sultani, Z. N., & Ghani, R. F. (2015). Kinect 3D point cloud live video streaming. Procedia Computer Science, 65, 125-132.
29- Tombari, F., Salti, S., & Di Stefano, L. (2010). Unique shape context for 3D data description. Paper presented at the Proceedings of the ACM workshop on 3D object retrieval.
30- Triebel, R., Kersting, K., & Burgard, W. (2006). Robust 3D scan point classification using associative Markov networks. Paper presented at the Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006.
31- Vandeborre, J.-P., Couillet, V., & Daoudi, M. (2002). A practical approach for 3D model indexing by combining local and global invariants. Paper presented at the Proceedings. First International Symposium on 3D Data Processing Visualization and Transmission.
32- You, B., Chen, H., Li, J., Li, C., & Chen, H. (2022). Fast point cloud registration algorithm based on 3DNPFH descriptor. Paper presented at the Photonics.