نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی کارشناسی ارشد فتوگرامتری، دانشگاه صنعتی نوشیروانی بابل

2 استادیار دانشکده عمران، دانشگاه صنعتی نوشیروانی بابل

چکیده

گسترش شهرها یک فرآیند پویاست و به‌روزرسانی نقشه‌های شهری به‌منظور ارائه خدمات بسیار مهم است. داده­های سنجش‌ازدوری منبع قدرتمندی برای استخراج مناطق ساخته‌شده می­باشند؛ یکی از داده‌هایی که می‌تواند پویایی مناطق شهری را تشخیص دهد داده‌های نور شب است. ازآنجایی‌که مناطق شهری در هنگام شب توسط نورهای مصنوعی موجود در منازل و خیابان‌ها روشن می‌شوند، درنتیجه به­خوبی از پس­زمینه متمایز خواهند شد. ازاین­روی مطالعه حاضر در تلاش است رشد و گسترش مناطق شهری را با استفاده از نمونه‌های آموزشی با کیفیت و اتوماتیک از روی ترکیبی از تصاویر نور شب و اپتیک، در یک بازه 24 ساله با دقت بالایی شناسایی و استخراج کند. دراین­راستا برای تولید نمونه‌های آموزشی با کیفیت، شاخص نور شب تحت عنوان [1]VTNUI توسعه داده شده است که با ترکیب ویژگی‌های مختلف بدست آمده از تصاویر لندست و نور شب در محدوده‌های شهری و در نظر گرفتن روابط بین مناطق، پدیده اشباع[2] و شکوفایی[3] تصاویر نور شب در محدوده شهری را کاهش داد. سپس با بررسی حد آستانه‌های خودکار بر روی شاخص توسعه داده شده نمونه‌های آموزشی با کیفیت تولید شد تا طبقه‌بندی دقیق‌تری از مناطق شهری ارائه شود. ازاین‌روی ابتدا از نمونه‌های آموزشی اولیه به دست آمده با استفاده از حد آستانه خودکار بر روی تصاویر نور شب طبقه‌بندی اولیه صورت پذیرفت سپس نمونه‌ها با اعمال حد آستانه خودکار بر روی شاخص معرفی شده پالایش شدند و طبقه‌بندی نهایی صورت گرفت. درنهایت بر اساس تحلیل سری زمانی، روند رشد منطقه بررسی شده است. به منظور بررسی اثربخشی روش پیشنهادی، دو منطقه دارای اقلیم متفاوت انتخاب شد و بررسی­های مختلف بصری و کمی برای ارزیابی صورت پذیرفت. نتایج طبقه‌بندی نهایی برای بابل و کرمان به ترتیب با میانگین ضریب کاپا 0/93 و 0/74 و میانگین دقت کلی 97/76 و 87/63 برای تمام سال‌های مورد بررسی به دست آمده است.
 
[1] vegetation and Temperature -NTL urban index
[2] saturation
[3] blooming

کلیدواژه‌ها

موضوعات

عنوان مقاله [English]

Investigating the dynamics and expansion of urban areas using automatic training samples obtained from the combination of night light and medium resolution satellite imagery

نویسندگان [English]

  • Fatemeh Ahmadi 1
  • Yasser Ebrahimian Ghajari 2
  • Abbas Kiani 2

1 MSc student in photogrammetry , Babol Noshirvani University of Technology, Mazandaran, Iran

2 Assistant Professor, Dept. of Geomatics, Faculty of Civil Engineering, Babol Noshirvani University of Technology, Mazandaran, Iran

چکیده [English]

Extended Abstract
Introduction
Urbanization can be defined as social and economic development and thus, urban planners need timely information for service provision and management in urban areas. Due to the difficulties of traditional methods, automatic and semi-automatic methods have gained special importance. Therefore, remote sensing data and image classification techniques have been used to help identify different types of land use. Nighttime light emission data can help researchers effectively identify human activities and urban areas. These satellite images are collected from the surface of the earth at night and can clearly separate nighttime light emission of urban areas from the surrounding dark areas. Thus, it can be concluded that various types of data with different nature and capabilities (spectral, nighttime light, etc.) are available for any specific area each of which has its own advantages and limitations. As a result, using a combination of these data types will increase accuracy and reduce uncertainty. Algorithms and scientific methods enabling this combination are thus of great importance. The present study applies a combination of nighttime light emission and daytime multispectral images to produce automatic and high-quality optimal training samples and locate built-up areas.
Material & Methods
Two study areas (in Babol and Kerman) with two different climates have been investigated in the present study. Also, DMSP and VIIRS nighttime light emission images and Landsat 5, 7 and 8 images collected during the statistical period have been used.
Research Methods
The present study has proposed an approach consisting of four main phases of pre-processing, feature extraction and production of initial training samples, selection of optimal training samples and finally classification and evaluation. Nighttime light emission images were corrected and primary samples including two classes of built and unbuilt areas were produced using the limit of automatic thresholds. Nighttime light emission is generally related with human activities, and thus, built-up areas usually have a higher nighttime light emission value compared with unbuilt areas which have a lower or zero value. Due to the saturation and blooming problems occurring in DMSP images and the relatively low spatial resolution of nighttime light emission data, training samples extracted from built areas using these data still include unbuilt areas such as water bodies and vegetation cover. Therefore, an index has been developed using features extracted from nighttime light emission and Landsat images. Considering the inverse relationship between various features of urban and rural areas (vegetation cover and soil) in LST images obtained from the thermal band of Landsat images and the NDVI vegetation index obtained from Landsat and features of urban areas in nighttime light emission image, an index was provided which maintains the main characteristics of urban areas in nighttime light emission images while minimizing saturation and blooming. Finally, time series of classified images was investigated and urban expansion was analyzed.
Result & Discussion
Following nighttime light emission data correction, an upward trend was observed for the values of pixels collected from each city which verifies the pre-processing stage. Then, an appropriate automatic threshold limit was selected in accordance with the features of each nighttime image and applied to produce the initial training samples. Nighttime light emission images were corrected using the introduced index to minimize saturation and blooming in urban and suburban areas. Training samples thus optimized were used for final classification. Due to the low quality of initial training samples, classified pixels obtained from urban areas did not confirm to reality. Thus, classification faded in Kerman city in some years and practically no classification was performed which shows the low quality of initial training samples. Due to the low spatial resolution of nighttime light emission images, the size of samples collected from built-up areas was falsely detected to be large, and thus, there were definitely samples related to vegetation, soil, and etc. in the specified range. In the next step, classification was performed using optimal training samples in which built-up regions were modified. In this way, results got closer to the reference data and reality. In fact, using a combination of nighttime light emission and Landsat data can overcome the limitations of both methods.
Conclusion
      Selection of training samples is considered to be the main and fundamental challenge of classification. With a valid training sample, classification is precisely performed. Since, traditional and manual methods of obtaining training samples are costly and time-consuming, automatic and semi-automatic methods have become specifically important. Therefore, the present study has classified and extracted built-up areas using satellite images. The initial training samples can be obtained automatically from nighttime light emission images, however high saturation and blooming of these images have reduced their quality. To solve this problem, a nighttime light index has been developed based on the relationship between the characteristics of urban areas in optical images and nighttime light emission images which has minimized related problems in both study areas with two different climates to a great extent. This shows the flexibility and effectiveness of the proposed method. High-quality training samples thus obtained were highly effective in the final classification phase. Investigating urban expansion time series has shown that urban growth and expansion have generally occurred around the city.

کلیدواژه‌ها [English]

  • Nighttime light emission data
  • Saturation and blooming
  • Automatic training samples
  • Urban built-up areas
1- Alahmadi, M., Atkinson, P.M., 2019. Three-Fold Urban Expansion in Saudi Arabia from 1992 to 2013 Observed Using Calibrated DMSP-OLS Night-Time Lights Imagery. Remote Sensing 11, 2266.
2- Bennett, M.M., Smith, L.C., 2017. Advances in using multitemporal night-time lights satellite imagery to detect, estimate, and monitor socioeconomic dynamics. Remote Sensing of Environment 192, 176-197.
3- Bharath, H., Chandan, M., Vinay, S., Ramachandra, T., 2018. Modelling urban dynamics in rapidly urbanising Indian cities. The Egyptian Journal of Remote Sensing and Space Science 21, 201-210.
4- Cao, X., Chen, J., Imura, H., Higashi, O., 2009. A SVM-based method to extract urban areas from DMSP-OLS and SPOT VGT data. Remote Sensing of Environment 113, 2205-2209.
5- de Pinho, C.M.D., Fonseca, L.M.G., Korting, T.S., De Almeida, C.M., Kux, H.J.H., 2012. Land-cover classification of an intra-urban environment using high-resolution images and object-based image analysis. International Journal of Remote Sensing 33, 5973-5995.
6- Elvidge, C.D., Ziskin, D., Baugh, K.E., Tuttle, B.T., Ghosh, T., Pack, D.W., Erwin, E.H., Zhizhin, M., 2009. A fifteen year record of global natural gas flaring derived from satellite data. Energies 2, 595-622.
7- Faisal, K., Shaker, A., Habbani, S., 2016. Modeling the relationship between the gross domestic product and built-up area using remote sensing and GIS data: A case study of seven major cities in Canada. ISPRS International Journal of Geo-Information 5, 23.
8- Felde, G.W., Anderson, G.P., Cooley, T.W., Matthew, M.W., Berk, A., Lee, J., 2003. Analysis of Hyperion data with the FLAASH atmospheric correction algorithm, IGARSS 2003. 2003 IEEE International Geoscience and Remote Sensing Symposium. Proceedings (IEEE Cat. No. 03CH37477). IEEE, pp. 90-92.
9- Guo, W., Lu, D., Wu, Y., Zhang, J., 2015. Mapping impervious surface distribution with integration of SNNP VIIRS-DNB and MODIS NDVI data. Remote Sensing 7, 12459-12477.
10- Huang, X., Schneider, A., Friedl, M.A., 2016. Mapping sub-pixel urban expansion in China using MODIS and DMSP/OLS nighttime lights. Remote Sensing of Environment 175, 92-108.
11- Jiang, S., Wei, G., Zhang, Z., Wang, Y., Xu, M., Wang, Q., Das, P., Liu, B., 2021. Detecting the Dynamics of Urban Growth in Africa Using DMSP/OLS Nighttime Light Data. Land 10, 13.
12- Kumar, V., Lal, T., Dhuliya, P., Pant, D., 2016. A study and comparison of different image segmentation algorithms, 2016 2nd International Conference on Advances in Computing, Communication, & Automation (ICACCA)(Fall). IEEE, pp. 1-6.
13- Li, S., Cheng, L., Liu, X., Mao, J., Wu, J., Li, M., 2019. City type-oriented modeling electric power consumption in China using NPP-VIIRS nighttime stable light data. Energy 189, 116040.
14- Li, X., Chen, X., Zhao, Y., Xu, J., Chen, F., Li, H., 2013. Automatic intercalibration of night-time light imagery using robust regression. Remote sensing letters 4, 45-54.
15- Li, X., Zhou, Y., 2017. A stepwise calibration of global DMSP/OLS stable nighttime light data (1992–2013). Remote Sensing 9, 637.
16- Liu, X., de Sherbinin, A., Zhan, Y., 2019. Mapping urban extent at large spatial scales using machine learning methods with VIIRS Nighttime light and MODIS daytime NDVI data. Remote Sensing 11, 1247.
17- Liu, Z., He, C., Zhang, Q., Huang, Q., Yang, Y., 2012. Extracting the dynamics of urban expansion in China using DMSP-OLS nighttime light data from 1992 to 2008. Landscape and Urban Planning 106, 62-72.
18- Lu, H., Zhang, M., Sun, W., Li, W., 2018. Expansion analysis of yangtze river delta urban agglomeration using dmsp/ols nighttime light imagery for 1993 to 2012. ISPRS International Journal of Geo-Information 7, 52.
19- Otsu, N., 1979. A threshold selection method from gray-level histograms. IEEE transactions on systems, man, and cybernetics 9, 62-66.
20- Pandey, B., Zhang, Q., Seto, K.C., 2017. Comparative evaluation of relative calibration methods for DMSP/OLS nighttime lights. Remote Sensing of Environment 195, 67-78.
21- Ramachandra, T., Bharath, H., Vinay, S., Joshi, N., Kumar, U., Rao, K.V., 2013. Modelling urban revolution in greater bangalore, India, 30th Annual In-House Symposium on Space Science and Technology, ISRO-IISc Space Technology Cell, Indian Institute of Science, Bangalore, pp. 7-8.
22- Tamimi, E., Ebadi, H., Kiani, A., 2017. Evaluation of different metaheuristic optimization algorithms in feature selection and parameter determination in SVM classification. Arabian Journal of Geosciences 10, 478.
23- Wang, J., Qiu, S., Du, J., Meng, S., Wang, C., Teng, F., Liu, Y., 2022. Spatial and Temporal Changes of Urban Built-Up Area in the Yellow River Basin from Nighttime Light Data. Land 11, 1067.
24- Wang, R., Wan, B., Guo, Q., Hu, M., Zhou, S., 2017. Mapping regional urban extent using NPP-VIIRS DNB and MODIS NDVI data. Remote Sensing 9, 862.
25- Wu, W., Zhao, H., Jiang, S., 2018. A Zipf’s law-based method for mapping urban areas using NPP-VIIRS nighttime light data. Remote Sensing 10, 130.
26- Xue, X., Yu, Z., Zhu, S., Zheng, Q., Weston, M., Wang, K., Gan, M., Xu, H., 2018. Delineating urban boundaries using Landsat 8 multispectral data and VIIRS nighttime light data. Remote Sensing 10, 799.
27- Zhang, Q., Schaaf, C., Seto, K.C., 2013. The vegetation adjusted NTL urban index: A new approach to reduce saturation and increase variation in nighttime luminosity. Remote Sensing of Environment 129, 32-41.
28- Zhang, X., Li, P., 2018. A temperature and vegetation adjusted NTL urban index for urban area mapping and analysis. ISPRS Journal of Photogrammetry and Remote Sensing 135, 93-111.
29- Zhao, M., Cheng, W., Zhou, C., Li, M., Wang, N., Liu, Q., 2017. GDP spatialization and economic differences in South China based on NPP-VIIRS nighttime light imagery. Remote Sensing 9, 673.
30- Zhao, M., Zhou, Y., Li, X., Cao, W., He, C., Yu, B., Li, X., Elvidge, C.D., Cheng, W., Zhou, C., 2019. Applications of satellite remote sensing of nighttime light observations: Advances, challenges, and perspectives. Remote Sensing 11, 1971.
31- Zou, Y., Peng, H., Liu, G., Yang, K., Xie, Y., Weng, Q., 2017. Monitoring urban clusters expansion in the middle reaches of the Yangtze River, China, using time-series nighttime light images. Remote Sensing 9, 1007.